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Introduction 

Polygons are strange inhabitants of our mathematical culture. They are a 

relatively simple kind of planar figures that nevertheless exhibit remarkable 

structural versatility and possess a number of interesting properties. Their 

practical value is immense: applications abound in mathematical and mechanical 

modeling as well as in computing. Polygons are a rich and important domain of 

algorithm design in computational geometry. 

Yet, general polygons are nearly absent from mathematical education. 

Apart from triangles and convex quadrilaterals, polygons are not studied in 

secondary school. The same largely holds for college and university education, 

with only a small number of partial exceptions. 

The unfortunate lack of attention for polygons in school may be due to the 

unavailability of a useful, simple, systematic, and mathematically rigorous 

approach to presenting the subject. Perhaps some of the core knowledge 

pertaining to polygons is deemed too abstract or in other ways difficult to deal 

with in school. 

We believe that such difficulties, if any, are perceived rather than real. In 

defending this standpoint, the rest of this text is dedicated to presenting, in a 
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manner accessible to secondary school students, several essential topics related 

to polygons. 

The Jordan curve theorem for polygons 

A plane curve is called simple if it does not intersect itself. A Jordan curve 

is one that is both simple and closed. The Jordan curve theorem states that any 

Jordan curve C divides the set of points in the plane, from which C itself is 

excluded, into two components, not connected with each other but each one 

connected and each having C as its boundary. One of the sets is bounded and 

considered interior, and the other is unbounded and considered exterior with 

respect to C. 

The theorem is famous for stating a seemingly obvious fact that is 

notoriously difficult to prove. Indeed, all known self-contained proofs are each 

no less than several pages long. Even in the particular case when C is a 

polygonal curve, a proof of the theorem, though considerably simpler, is usually 

still fairly complicated. In fact, what the theorem asserts is not as trivial as it 

would seem at first, because a ‘simple’ curve, be it a polygonal one, can have a 

myriad of meanders and roundabouts. 

We offer here a proof of the Jordan curve theorem for the polygonal case 

that is, hopefully, more intuitive than the known ones, and that uses induction. 

The use of induction on the number of vertices of a polygon is natural and a 

good opportunity to combine geometric and combinatorial reasoning in solving 

a problem. In the course of presenting the proof of the theorem we establish the 

validity of several accompanying propositions. 

Let C be a simple closed polyline. A straight line is said to be supporting 

to C if it contains one or more points of C and there is a half-plane with respect 

to the line that contains no points of C. If a direction is associated with the line 

and e.g. the right half-plane with respect to that direction is the one that contains 

no points of C, we say that the line supports C from the right, or is a right 

supporting line. 

Now, whatever direction we choose in the plane, there is a right 

supporting line to C with that direction. Indeed, let us take an arbitrary line l of 

the chosen direction. If its right half-plane does not contain points from C, a 

right supporting line is the one parallel to l and passing through the nearest 

vertex of C to l (including l itself if the nearest vertex of C is on l). If the right 

half-plane of l does contain points from C, a right supporting line is the one 

parallel to l and passing through the farthest vertex of C on the right of l. 

We note that, by construction, the supporting line contains at least one 

vertex of C. Also, if the line contains more than one point of C, then among 

these points there are at least two vertices: assuming otherwise would mean that 
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the line intersects C at a non-vertex point, and that contradicts with it being a 

supporting line. Furthermore, it is possible to choose, among the infinitely many 

directions, one such that the supporting line has only a single vertex on it. If it 

was not so, and if no vertex lies on infinitely many supporting lines, then there 

must be infinitely many vertices – a contradiction. And if some vertex lies on 

infinitely many supporting lines, always accompanied by another vertex, then 

again there must be infinitely many vertices. 

The points in the right half-plane of a right supporting line form an 

unbound set and therefore should belong (together with other points) to C's 

exterior. Keeping this in mind, we are prepared to prove the theorem. 

Let the vertices of C, in some order along C, be V1,V2,…,Vn. If n = 3 – C is 

a triangle – the theorem obviously holds, establishing the base of the induction 

hypothesis. 

Let n be greater than 3. We construct a right supporting line l passing 

through a single point of C which by necessity is a vertex. Without loss of 

generality we can assume that vertex to be V1. If there are no points of C inside 

∆VnV1V2 or on VnV2 (other than V1, V2 and Vn), we mark the line segment VnV2. If 

there are points of C inside ∆VnV1V2, then this triangle is sure to contain a vertex 

(otherwise C would be self-intersecting, which it is not). In general, there may 

be more than one such vertex, so let Vi be the one farthest from VnV2. And if 

there are no points of C inside ∆VnV1V2 but there are such points on VnV2 

(between its end points), then again there is necessarily at least one vertex 

among them, so let Vi be such a vertex. We then mark the line segment V1Vi. 

Note that in either case the marked segment is guaranteed to not contain points 

of C other than its end points. 

Now we use the marked segment, VnV2 or V1Vi, to form two polygons, 

either ∆VnV1V2 and VnV2…Vn−1 or V1V2…Vi and V1Vi…Vn. In either case the 

marked segment is common to the two new polygons and each of them has only 

a part of the vertices V1,V2, … ,Vn, thus less than n in total. By induction 

hypothesis, each such polygon divides the plane as stated by the theorem. In 

order to finally prove the theorem, we must demonstrate that from it holding for 

the two smaller polygons it follows that it also holds for C. 

Let A+ , A− and A be the interior, exterior, and the boundary of one of the 

polygons, similarly B+ , B− and B for the other, and E be the marked segment. 

We need to show that C+ = A+⋃B+⋃E is the interior of C, C− = A−∩B− is the 

exterior, and that they are separated by C = (A\E)⋃(B\E). 

Indeed, A+ and B+ are connected within themselves by induction 

hypothesis, and so is E because it does not contain points of C; each of A+ and 

B+ is obviously connected to E; and each of A+ and B+ is connected to the other 

through E. Thus C+ is connected. However, it is not connected to any point in 

C−. For example, a point of A+ is, with respect to A, not connected to any point 
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of C− because those are points of A−. So with respect to C they could only have 

been connected through E but that also means that points of B+ are directly 

connected to C− and therefore to B− which the induction hypothesis forbids. 

Finally, C− is connected because each of A− and B− is, with respect to A and B, 

and to not be connected with respect to C would mean that the former 

connectedness is but through A+⋃A\E or B+⋃B\E which is absurd. 

Thus the Jordan curve theorem is proved for polygons. 

Orientation and complexity 

Once the theorem is established, a number of useful consequences follow. 

For example, since we can distinguish between interior and exterior, 

attaching orientation to C is meaningful. By convention, positive orientation is 

associated with the interior being on the left and the exterior on the right of C. 

Thus the polygon is positively oriented if interior is on the left when visiting the 

vertices in the (cyclic) order V1V2…Vn. In particular, it follows that a triangle 

ABC is positively oriented if AC is in the left half-plane with respect to the 

oriented line AB. 

One way to know whether a general polygon is positively oriented is by 

using a supporting line. If a right supporting line passes through a vertex Vi, C is 

positively or negatively oriented according as the order induced by the line on C 

is Vi−1ViV i+1 or Vi+1ViV i−1. We can observe that the orientation of C in increasing 

order of indices is the same as that of ∆V i−1ViV i+1. Furthermore, all vertices Vi 

for which ∆V i−1ViVi+1 is oriented the same way as C are the convex vertices of 

C, and those for which ∆V i−1ViV i+1 has opposite orientation are non-convex. 

Conversely, we can tell the orientation of a polygon by knowing only three 

consecutive vertices V i−1, Vi, V i+1 and whether Vi is convex or not. 

These are useful ways to relate orientation and convexity but of course, 

the convexity of a vertex does not depend on orientation and can be defined e.g. 

as follows: a vertex Vi is convex if in a sufficiently small vicinity of Vi the 

smaller angle between the rays ViV i−1 and ViV i+1 contains only points from the 

interior of the polygon. It is no hard exercise to convince oneself that the so 

defined convexity of vertices is the same as the one we considered above. 

Another useful result that follows from the Jordan theorem is that, given a 

point P, we can determine whether it belongs to the interior or exterior of a 

polygon using the following simple procedure: construct a ray with P its starting 

point and find out whether it intersects the line V1V2…VnV1 at an odd or even 

number of points – these correspond to interior and exterior, respectively. Here 

we use the fact that the ray can only intersect the polygon at a finitely many 

points. In order to avoid indeterminacy or difficulty in determining intersections, 

the ray must be given such a direction that it does not pass through any of the 



Boyko Bantchev 

59 

vertices of the polygon. Again due to having finitely many of them, such a 

choice is always possible. 

Triangulation 

To triangulate a polygon means to decompose it into triangular pieces 

where the vertices of each triangle are those of the polygon. It is implied that the 

interior of a triangle is a subset of that of the polygon, the whole polygon is 

covered by triangles, and no two triangles overlap. 

It follows that a triangulation, if possible, amounts to selecting a proper 

set of diagonals of the polygon. And it is clear that some polygons can be 

triangulated in more than one way – to observe this it suffices to consider a 

convex quadrilateral. However, it is not immediately obvious whether a polygon 

can be triangulated at all. 

Possibility of triangulation, and in fact an algorithm for triangulating a 

polygon, follows from repeated construction of marked segments as we did for 

proving the polygonal variant of the Jordan curve theorem. After realizing that 

each such segment, being related in one of two ways to a convex vertex, lies 

entirely in the interior of the polygon and is therefore a diagonal, it remains to 

repeat constructing diagonals until all resulting sub-polygons are triangles. The 

discussion in the proof of the theorem guarantees that every polygon with more 

than three vertices has a diagonal. 

If a certain triangulation of an n-gon produces t triangles, then this must 

have been achieved with constructing t−1 diagonals because each added 

diagonal increases by 1 the number of areal figures into which the polygon is 

decomposed, and before any diagonal is drawn there is only one figure – the 

polygon itself. On the other hand, if there are t triangles, then there must be 

(3t−n)/2 diagonals: each triangle has 3 sides, 3t in total, including the n sides of 

the n-gon and the diagonals, each counted twice because it is a side of two 

triangles. Equating t−1 to (3t−n)/2 yields t = n−2. 

Thus no matter how a triangulation of an n-gon is done, there are exactly 

n−2 triangles obtained by drawing n−3 diagonals. 

If a triangulation is considered a graph, in the graph-theoretic sense, with 

nodes at the vertices and an edge for each side and each diagonal of the polygon, 

then the dual graph has a node for each triangle, linking two nodes wherever the 

respective triangles share a side. 

The dual graph is connected because the polygon itself is, and, as just 

pointed out, its edges are one less in number than the nodes, it is actually a tree – 

a connected graph with no loops. This relation between the numbers of nodes 

and edges is characteristic of trees and is easily established by induction. 
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Conclusion 

We have presented a number of facts concerning general simple polygons. 

The presentation is sufficiently simple to be accessible to students in secondary 

school but requires commitment, diligence, and thoroughness from the audience. 

It combines geometry, combinatorial counting, a bit of graph theory, and offers 

a glimpse at topology. 

Establishing the validity of the Jordan curve theorem for polygons, on the 

one hand, exemplifies the necessity for rigorous consideration of even most 

fundamental, albeit seemingly trivial matter (or precisely of such matter). On the 

other hand, it is indispensable for dealing with the rest of the topics, and 

thorough understanding of this dependence is another expected benefit of 

discussing such a subject at school. 

We end by noting that there are other no less important and interesting 

topics related to polygons that are simple enough to be discussed in school, e.g. 

area and areal centre calculation. They deserve individual attention and 

hopefully will be the subject of at least one paper to follow this one. 

 


