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Pe3tome. Hzcneosam ce HenuneliHu Hea8MOHOMHU cucmemu OughepeHYUaIHU YPagHeHUs: ¢ NPOMEHAUBA
CMpPYKmMypa u umMnyichuu ev3oetcmausi. Ilpednonaza ce, ye cmanama Ha cmpyKkmypama u UMnyjacHume
8b30€LCMBUS Ce OCHUEeCMBasam eOHOBPEMEHHO 8 MAKA HapedeHume npeeraoygawu momenmu. Tesu
MOMeHmMU 3a8UCAM Om peuieHuemo, m.e. me ca npomeHausu. Onpedensm ce ¢ nomowma Hd
npeodsapumentHo 3a0d0eHU NPesKIoYeaUl MHONCECMEd, CbLOMBEMHU HA OeCHUme CHmpaHu Ha
cucmemama. Mmuoocecmeama ca pasnonodcenu 6v8 Hazogomo npocmpancmeo. Touno 6 mesu
NPesKIOYEAUU MOMEHIMU MPAEKMOPUAMA CPewd NPesKIUsauume MHOJICecmea. Bvamooicno e npu
HAKOU peuleHus (Moea O03HAYA8A NPU HAKOU HAYAIHU WMOYKU) CbOMEEMHUME HA peuleHuemo
NPeGKIYBAUY MOMEHMU 0d npumexcagam mouka Ha cevemsasane. Cnedogamenno, 8 mesu Ciyyau
PeueHUemo Ha CbOMBemHama Ha4aina 3a0aya He e npoowaHcUMo 00 beskpatinocm. B pabomama ca
NOJYYeHU OOCMAMbYHU YCI08USA 30 HEOSPAHUYEHO HAPACMEAHe HA MOMEHMUMe HA NPeGKIo4eane 3d
ROYMU 8CUYKU PEUleHUs, M.€ 3d NOYMU 8CUYKU HAYATHU MOYKU.

Knwuoseu oymu: neagmonomuu Henuneunu Ou@epeHyuanHy YpasHeHus, UMNHYICHU eghexmu,
NPesKIIoY8aAUU MOMEHMU

The object of research in the paper is the following initial problem for nonlinear non-
autonomous systems of ordinary differential equations with variable structure and impulses in
non fixed moments and nonlinear switching functions:

%: f.(t.x), ¢ (x(t))=0, t, <t<t, 1)
o (x(t))=0,i=12,.., )
X(t+0)=x(t)+ 1, (x(t)), 3)
X(ty)=X,, (4)
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where the functions f,:R*xD —>R", f, :( fl, fiz,...fi"); the phase space D is non empty
domain in R"; the functions ¢, : D — R; the functions 1,:D—R"; (ld+1;):D—>D. An
identity in R" is denoted by Id , i.e. 1d (x)=x; an initial point (t,,x,)e R* xD, ¢,(X,)#0.

The solution of the considered initial problem is a piecewise continuous function. It is
continuous on the left at each point of the interval domain, including the moments t,t,,...,

named moments of switching. The functions 1,,i=12,..., are impulsive and ¢, i=12,...,

are switching functions.
The following notations are used:

- f={f.f,..} e={one,.) 1 ={1L0,,00;

- X(t;t5,%,) is a solution of problem (1) - (4);

- The sets @, = {x eD; ¢ (x) = 0}, i=12,... are named switching hypersurfaces of the initial
problem which is investigated,;

- The function 1,(x)=0 for xe D;

- The function X (t;t,,%,) is a solution of the problem with constant structure and without

impulses;

%:fi(t,x), X(t) =%, i=12,...; (5)

- The curve y(to,xo):{x(t;to,xo), teJ(ty X%, f)} is a trajectory of the studied problem,
where J(t,,%,, f) is the maximum interval of existence of this solution;

- The curve 7 (t), %) ={X (t;ty, %), teJ(ty, %, f,)} is a trajectory of problem (5), where
J (5, %, f;) is the maximum interval of existence of the solution, i=1,2,...;

- ||| and {.,.) are the Euclidean norm and the scalar product inR", respectively.

The following conditions are introduced:
H1. The functions f; e C[R+ x D, R”] and the constants C, >0 exist such that

(V(t,x)eR"xD )=|fit.x)<C, ,i=12,...
H2. The functions ¢, € C*[D, R] and the constants C,,,,, >0 exist such that
(Vx e D):>ngadgoi (x)Hngrad%, i=12,...
H3. The functions 1, eC[(Di,R"] and (ld+1,):®, > D, i=12,...
H4. The following inequalities are valid:
o,((1d +1., Xx)Xgrade, (x), f,(t,x)) <0,(t,x)eR* xD, i =1,2,...,
where 1,(x)=0, xeD.

H5. There are constants C< > 0 such that

gradg;, f;)
( W(t,x)eR"xD )=|(gradg(x), f,(t, X)}|> C graqy. )i =120

H6. For any point (to,xo)e R*xD and for each i=1,2,..., a solution of initial problem (5)

exists and it is unique for t>t,;.

H7. There are constants C >0 such that

2 (1 +1) (%)) 2C,, gy 1 =120

(p|+1(|d+|i)

(VXEGDi):
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C
H8. The series » o) are divergent.
Zj:l grade; *~f; g
The next theorems are valid:
Theorem 1. Let the conditions H1 and H6 be fulfilled. 7hen the solution of problem (1) - (4)
exists and it is unique for any t >t,.

Theorem 2. Let the conditions H1+ H6 be fulfilled. Then the trajectory of problem (1) - (4)
meets each one of the hypersurfaces @,, i=12,....

Proof. Firstly, we show that the trajectory y (t,,%,) of the initial problem with fixed

structure and without impulses

dx
i fL(tx), X(t)=X%,

meets the hypersurface @, . Recall that
(Id+1,)(x)=x, xeD.
Then, using condition H4 (for i =1), it follows that one of both cases is satisfied:
Case 1. ¢ (x) <0, xe D and (grade (x), f,(t,x))>0,(t,x)eR" xD;
Case 2. ¢ (x)>0, xeD and (grade, (x), f, (t,x)) <0, (t,x) e R*xD.

We will discuss first case. The other one is considered analogously. For the
convenience of recording, we introduce the function

4 (1) =a (% (615, %)) = (X (51, % ) X7 (it X0 ) oo X (Eit5, %))
which is defined for te J (t,,%,, f,) =[t;,0). We have

¢1(t0) :(01()(1<t0;to' Xo)) = (pl(xo) <0.
Under condition H5, it is fulfilled

d 0 d ./,
a@(t)=§¢1(><1(t:to,xo))axl(t,to,xo)

0 d
+y¢l(x1(t:to,xo))aXf(t:to,xo)

ain (Pl(x1(t;t0’X0)) ' (t’xl(t;to’XO))
~(grade, (% (tito %)) » (6% (tit0%,))
= <gradg01(><1(t;to'xo))’ fl(t’xi(t;to’x())»‘

=const >0.

—+

(grade, f;)
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By the fact
¢ (t,)<0 and %qﬁl(t)=const>0, t>t,,

it follows that there exists a point t, > t, such that

(% (Lt %)) =4 (t,) =0.

i.e. at the moment t,, trajectory 7, (t,,X,) meets the hypersurface @, . Since

7(th, %) =7 (th, %) for ty<t<t,
we conclude that the trajectory of the problem with variable structure and impulses also
meets the hypersurface @, at moment t;.

Assume that, the trajectory of problem (1) - (4) meets successively the hypersurfaces
2 @; at the moments t,t,,...,t;, respectively. We will show that the trajectory

7/i+1(ti’x(ti;t0’ Xo)+1; (X(ti;tO’ Xo))) = 7i+1(ti X (4 +0;t, Xo))
of the problem with fixed structure and without impulses

%Z fi+l(t’x)' X(ti)=X(ti;t0,X0)+ I (X(ti;to’xo))zx(ti +O;tO’XO)

for ted(t,x(t+0;t), %)), f,,;)=[t;,o0) meets the hypersurface @,
the functions

D, D

1!

Under condition H4,

i+1"

¢i+1 ((Id + Ii )(X)) and <grad¢i+1(x)’ 1:i+1 (t’ X)>
do not cancel in their domains and for any point (t,X)e R x D, they have opposite signs.
Without loss of generality, we suppose that the next inequalities are valid:

@ ((1d+1,)(x))<0, xe D and (grade,,(x), f,.,(t,x))>0,(t,x)e R" xD. ©)
We consider the function ¢, : [t oo)—> R, which is defined by the equalities

¢i+1(t):(Pi+1( |+1(tt X(t ' X) Ii(x(ti;tO'XO)))> (7)
:¢i+1( |+1(t tI,X( +O;to’xo)))'

We have
|+l g0|+l(xl+l tl ’tI’X t +O tO’XO))) (8)
—(le(x t +0t0, )
—§0|+1(X t o X (ti;to'xo)))
=g ((1d+1)(x(; to,xo)))<0.
For t >t it is satisfied
d
S () ©
d
= a%ﬂ( |+1(t tI’X(t +0 tO'XO)))

<gradgoi+1( X (68, X (5 + 055, %)) fi+1(t,xl+1(t;ti,x(ti+O;t0,x0)))>
- Kgradgoﬂl( X (11, X (6 4035, %,))) f”l(t,XHl(t;ti,X(ti+0;to,xo)))>‘

2 Cigradg. 1.,y = CONSL>0.
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From (8) and (9) it follows that there exists a point t,, >t such that

¢|+1(|+1) 0 < §0|+1( |+1(t|+1’t|1x(t +05t, XO))):O.
The last equality means that the trajectory yi+l(ti,x(ti+0;t0,x0)) meets the
hypersurface @, , atthe moment t, . As
¥t %) = 7 (1 X (4 +05t,%;)) for £ <t<t,,,
we find that the trajectory y(to,x ) of problem (1) - (4) also meets the hypersurface @, ,. The
proof follows by induction.

i+1

O

Theorem 3. Let the conditions H1+H7 be fulfilled. Then the next estimates are valid:

C
—t >l g2

t

i+1 i
C :
gradegy,; * fig
Proof. Again, without loss of generality, we suppose that the inequalities (6) are valid. For the
function ¢ _,, which is defined by (7), we have

B (tia) =da(t) (10)
:gz>i+1(xi+l(Hl,t,,x(t,+O;t0,x0)))—qoi+l(xi+l(ti+O;ti,x(ti+0;t0,x0)))
= 0= (X(tito, %)+ 1 (X(tit0,%))
== ((1d+1)(x(t:t5, %))

[ (1 1) (x(tt,)))

>C
Ga(1d+1;)
On the other hand, there exists a point z,where t, <7 <t;,,, such that

¢|+1 (ti+1)_¢|+1 (t )
=_¢( )( i1 i) %(Pm(x(r;to'Xo))-(tm_ti)

:(%ﬁﬂm(x(f;to’xo)) f|+1(7 X(7 3t % ))

+ g (X(rit)) B (7 Xt %)

2

=<gl’ad(0i+l(X(T to’xo))' fi+1(7 X(T Ly, Xo))> ( i1 ti)
Sngadwm(X(T toyxo))H- fi+1(T'X(T;to’Xo H i+l_ti)
< Cyratg, Cr(ta 1)

gradg,

From the inequality above we obtain

t,—t= C;(¢(ti+1)_¢(ti ))’

grade;, C fia
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from where, bearing in mind inequality (10), we obtain the required estimate.
W

Theorem 4. Let the conditions H1+H8 be fulfilled. 7hen the solution of problem (1) - (4) is
defined for t>t,.

Proof. The statement follows from the fact that
limt, = lim((t —t )+ (t —t,) +et (b=t + 1)

> Iimzij:lAj =" A+t

i—w

3 Cal)
“c, .. C.

grade; "~ f;
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