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Peztome. B masu paboma ce usyyasa cneyuaneH Kiac HeiuHeiny HeagmoHOMHU CUCIeMU 0OUKHOBEHU
ougepenyuanriy ypasHeHus ¢ NPOMEHAU8A CIMPYKMypa u umnyicu. [Jacnama cmpana Ha 6csKa eoHa
om mesu cucmemu ce uzbupa nociedosamenno om muoxcecmso t, koemo ce cocmou om 6e36poiino

muozo @yukyuu. Umame T = { f=f (t, X), i=12, } OcHosnu enemenmu Ha 6CAKA cucmemd
Ougepenyuantu YpasHenus. om pas2iexcoaniuss Mun ca MHOXCECME0mMo Om NPesKioueauu yHKYuu.
gpz{goi =@ (X) i =1,2,...} U MHOJCECMBOMO OM UMNYACHU QyHKkyuu: | ={Ii =1, (X) i :1,2,...}.
Besika eona om npeskmousawjume yukyuu @, u umnyichume gynkyuu |, e coomeéemna na oscnama
cmpana ., 1=12,.... [lopednama | -ma npomsna na OACHAMa CMpana Ha cucmemama (CMAHAMa Ha

f. c f..) u CbOMBEMHOMO UMNYICHO 8v30eticmaue 8bDXY  peuieHuemo

X(ti ) - X(ti + 0)=X(ti )+ I (X('[i )) ce usgbLpuIeam 6 maxa Hapeuyenust |-mu no ped MOMEHMm Hd
npeekmousane t;, 1=1,2,.... Touno 6 mosu Momenm pewieHuemo aHyIupa nPesKI46auama QyHKyus

Q., me. @ (X(ti)) =0, 1=12,....0cnosnama yen na usciedganusma e 0a ce nOCoYam RPudUHuUMe,

npu  Koumo cucmemume Oupepenyuaniy  ypagHenus ¢ NPOMEHIUBA CMPYKMypa U UMNYICU
npumedcasam peuieHus, KOUmo He ca npoowaxcumu 0o Oeskpannocm. M3yuen e ciyuasm, K02amo
HEeNnpOOBLINCUMOCIIMA HA peuwleHusma (Ui Kakmo e npuemo oa ce Kazea ., 3a2usanemo’’ Ha
peuteHuama) ce OvbdiCU Ha UMNYICHUME 8b30eliCEUs.

Knwouoeu oymu: umnyicuu cucmemu, npegkuiougamy (hyHKyuu, ,, CMbpm Ha pewienus’”’

The object of investigation in the paper is the following initial problem

%: f(6X), (8 x(t) £a, t, <t<t, (1)
(a,x(t))=a;, i=12,..., (2)

X(t+0)=x(t)+ 1 (x(t)), (3)
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X(t) =%, @
where

- the functions f,:R"xD —R";

— the phase space D of system considered is non empty setin R";

- the vectors a, :(ail,af,...,ai”)e R"and a #0;

- the constants a, € R;

- the functions I, :D > R";

- -(ld+1;):D—D, Id isan identity in R";

~ the initial point (t,,x,)e R" xD, (&, %) # .

The solution of the initial problem is a piecewise continuous function with jump
discontinuouty at t,t,,.... This solution is continuous on the left at any point in its domain.
The points t,t,,... are named moments of switching. The functions I,,i1=12,..., are called
impulsive. As it can be seen from (1) and (2), the functions ¢, (x) = <ai : x>—oci are linear, and
their corresponding sets:

O, Z{XE D; (a,x)=ax" +a’x* +...+a'x" :ai}, i=12,.
are parts of the hyperplanes in phase space. The functions ¢, i=12,..., and the sets
®,,1=12,... are called switching functions and switching sets.

The following notations are used:

- f ={f1, f2,...}, gz):{(pl,(pz,...}, I ={|1,I2,...};
- X(t;t5,%,) is a solution of problem (1), (2), (3), (4);

- X% (t;t5,%,) is a solution of the problem with fixed structure and without impulses
dx
=f(t,x), x(t;)=%,, i=12,.. (5)

dt
the curve 7 (ty, %) ={X(tity, %), te I (ty, %, f)} is the trajectory of the studied
(t

problem, where J ) is the maximum interval of existence of the solution;

01

, f
the curve 7 (t,, %) ={X (tit, %), t€(ty, %, f;)} is the trajectory of problem

(5), where J(t,,%,, f;) is the maximum interval of existence of the solution,
i=12,..;
|.| and {.,.) are the Euclidean norm and the scalar product in R", respectively.
Further, we will use the following conditions:
H1. The functions f. e C[R+ x D, R"], i=12,....
H2. The functions 1, eC[@i,R”] and (ld+1,):®, >D,i=12,...
H3. For any point (to, Xo)e R xD and for each i =1,2,..., the solution of the initial problem
(5) exists and it is unique for t >t,.
H4. The equalities ||a,| =1, i =1,2,.... are satisfied.
H5. The next inequalities are valid:
(a,(1d +1,, Xx))—a Na, f,(t,x)) <0,(t, x)eR* xD, i=12,...,
where 1,(x)=0, xeD.
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H6. There exist constants C,, , >0 such that

(Vtx)eR xD )=|(a, filt, x))|>Cp i =12,

H7. There exist constants C, >0 such that

(‘v’Xe(Di):Kam,(ld +1)(X))—a,|<C, . i=12,...

ai+1 !

. - C,
H8. The series )~ —<— are convergent.
<ai+1'fi+1>

Theorem 1. Let the conditions H/+ H6 be fulfilled. Then the trajectory of problem (1), (2),
(3), (4) meets each one of the hyperplanes @, i=12,....

Proof. We will show that the trajectory of the considered problem meets the hyperplane @, .
From condition H5 it follows that one of the following two cases is satisfied:

Case 1. ((a,X)—a,)<0, xeD and (a, f,(t,x))>0,(t,x)eR" xD;

Case 2. ((a,X)—)>0, xeD and (a, f,(t,x))<0, (t,x)eR"xD.

Here, we will look at the second case. The first case is considered similarly. We
introduce a function y, (t)=(a,, x, (t;t), X, )) —a,, where X, (t;t;, X, ) is a solution of problem
(5) for i =1. The function v, is defined for t e J (t,,%,, f,) =[t;,0). We have

vi(t) = (2% (toit, %)) —an = (@, %)~y > 0.

According to condition H6, it is satisfied

s 0-{a. gxnn)
:<a1, fl(t,Xl(tito:Xo)»
- _Kai, fl(t,Xl(t;to'Xo)»‘

<—C,,.1, =—const<0.

From the fact
v, (t,)>0 and %% (t)<—const <0, t>t,,

it follows that there exists a point t, > t, such that

<ai'x1(t1;to'xo)>_a1 :Wl(tl):O'
This means that at the moment t,, the trajectory y,(t,,%,) meets the hyperplane ®,.
Given that
7(th, %) =7 (tg, %) for ty<t<t,
we conclude that the trajectory of problem (1), (2), (3), (4) also meets the hyperplane ®, at
the moment t,.

Assume that the trajectory of investigated problem consistently meets the hyperplanes
D, D,,..., D, at the moments t,t,,...,t;, respectively. It is fulfilled t <t, <,...,<t,. We will

show that the trajectory 7, (t,, X(t; +0;t,,%,)) meets the hyperplane ®,,, from which it
follows that the same is true for the studied trajectory 9/(t0,x0). Again, taking into account
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condition H5, without loss of generality, we will suppose that the following inequalities are
valid:

(a0, (1d +1,)(X))~,, >0, xeD and (a,,,, f,(t.x))<0,(t.x)eR"xD . (6)
We consider the function y,,,, which is defined by

1//i+l(t):<ai+1, X (£t X (6 + 051, X ))> t>t . @)
We have

Via(t)= <a|+1’ |+1(t|'tux(t +O'to’xo))>_ai+1
(8 X (4 +05t, %, )~

< t it Xo +| ( (ti1t0’xo))>_a
<a1+1, 1d+ 1) (X (4515, %))~ ., >0.

For t >t itis satisfied
%V/iﬂ (t) = <ai+l ! fi+1 (t’ X|+l (t ;tO' X(t’tO’ XO)))>

:_Kaﬂl ' fi+1( ' |+1(t tO’X(t t01XO))) >‘

<-C

Therefore, there exists a point t, ,

l//i+l(|+l) O Nt <ai+1’ i+1(ti+1;t0’x(ti+0;t0’xo))>_al+1:0'
The last equality shows that the trajectory ., (t,, X(t +0;t;, %)) meets the

(o) = —const <0.

> 1, such that

hyperplane @, , at the moment t. . The same applies to the trajectory ;/(to, xo).
The proof of the theorem follows by induction.

i+1°

Theorem 2. Let the conditions H -+ H7 be fulfilled. Then the next estimates are valid

C
t ot <—3  j=12...

i+1 i =
C<ai+l' fia)

Proof. Let i be an arbitrary natural number. We consider the function ., , which is defined
by equality (7). Directly, we obtain the next equality

< 410 (t +0:15, % )> Oy
V/i+1(t): :<a|+11 '(tu o0 X ) l; (Xi (ti ;t01X0))>_ai+1’ t=t;

< i+1? (t t X )> |+l t| <t<tl+1
Again, we suppose that the inequalities (6) are valid. Using condition H7, we receive

Vi (ta) =¥ (t) (8)
=(1 X (st %)) = (8 X (4 + 05ty X))
:—<a1.+1, X (t3te %)+ 1 (% (3t Xo))>+a
=‘<ai+1,(ld 1) (% (0. %))~ @i
<C,.-
On the other hand, using the conditions H6 and H4 consistently, we obtain
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Via (ti+l) ~VYia (ti ) ©)
:%l//m (t*)(tm -1 )
= %«am’ X(t* 1os % )> _ai+l)'(ti+1 ~t;)

d

= E(<ai+l1 X1 (t* Lo X(ti +0,%, Xo))> _ai+l)'(ti+1 _ti)

= <a‘i+l ’ fi+1 (t*’ Xi+l (t* ;tO‘ X(ti + O’ tO’ XO )))>(tl+l _ti )
2 ||ai+l||'c<ai+1,fi+1>'(ti+l _ti )
=Clati) (th—t),

where the point t™ satisfies the inequalities t, <t™ <t
estimate.

From (8) and (9) it follows the wanted

i+1°

L]

Theorem 3. Let the conditions H1+H8 be fulfilled. Then the solutions of system (1), (2), (3)
die due to the impulsive effects.

Proof. It is valid
3ty %0 F) =[to, 4 ]U(t, 6, JU(L,,t5]U... =[t,,t°), where

t" =limt,

1—00

=t + !Lrg((tz —t,)+(t,—t,) ..+ (t -t ))
=+ (L. —t)

=H+ZLC Cm <o

<grad(p,+1 ' fi+1L>
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