
Научна конференция „Иновационни софтуерни инструменти и технологии с 

приложения в научни изследвания по математика, информатика и  

педагогика на обучението“, 23-24 ноември 2017 г., Пампорово 

83 

Scientific Conference „Innovative Software Tools and Technologies with Applications in 

Research in Mathematics, Informatics and Pedagogy of Education”,  

23-24 November 2017, Pamporovo, Bulgaria 

 

 

 

 

 

NATURAL-ORIENTED PROGRAMMING  

 
Stoyan Cheresharov 

 
Abstract. This paper describes a model for software architecture, called “Natural-

Oriented Programming” and its four principles. The existing paradigms of the 

object-oriented, aspect-oriented, event-driven, domain-driven, test-driven 

development, design patterns and other research does not fully answer the question 

how the entire software architecture of a system should look like. We propose a 

generalized model for software architecture and its four principles. They include 

the principles of communication, unit, time and space. It is a new paradigm and 

way of thinking. We have built prototype software systems as a proof of a concept, 

using the model. Each prototype is sound and stable. The model allows the 

development of enterprise applications to become standard and trivial process 

instead of craft and art. The wide adoption of models like this could allow the 

industrialization of the software development. 

 
Keywords: Software Architecture, Object-Oriented Programming, Aspect-

Oriented Programming, Event-Driven Development, Design Patterns 

 

1. Introduction 

Building a Complex Software Application is a difficult task. The Design 

Patterns [1-3], Best Practices [4-6], give only common ideas of how a system should 

be built. “Strong cohesion” [7-9], “Loose coupling” [10-12], “Refactoring” [13, 14], 

the Principles of the Object [15, 16] and Aspect [17, 18] Oriented Programming have 

proven their advantages in the software development. But the main question “How to 

follow them and build an application in a consistent way?” remains. The problem is 

that the given general directions still keep the process of creating software systems in 

the state of an art and craft. The main limitation is that no clear steps are defined. 



Stoyan Cheresharov 

 

84 

Every system has its own architecture principles, ideas and philosophy. This makes 

the process of development and maintenance very difficult and time consuming. The 

developers have to go through the slow process of knowledge transfer for each 

system. We need models that allow industrialization of the software development. 

Workers with no skills and experience should be able to participate. Solving this 

problem is interesting and important because the software becomes a crucial part of 

the human society. We are talking about AI, IoT, 3D printing, Single Board 

Computers, Serverless Architectures, Augmented Reality etc. more and more quality 

software have to be build. Finding a way to produce software in the industrial scale 

is important. This study extends and augments our knowledge and principles. It 

gives a different perspective and way of thinking for solving common well known 

problems, by modeling the world in our dimension. A parallel is made between the 

natural world and the software systems.  

The proposed principles and model are used for building an Expert System for 

the Education [19]. But these principles are more fundamental and can be applied for 

any kind of a system.  

Building an Expert System for example, is in fact building an Artificial 

Intelligence [20]. But the Intelligence is the highest form of existence. How do you 

build intelligence? Some approaches already have been thoroughly studied in many 

papers [21]. They cover different aspects of the Expert Systems such as the decision 

making algorithms [22], Neuro-Fuzzy Expert System [23]. We want to move the 

focus on the fundamental architecture of the system. This is an innovative approach, 

inspired by the fundamental principles of the creation. The only intelligent life we 

know so far has been built by the nature. Artificial Intelligence has not been built 

completely by the human beings so far. So, we have to follow the steps of the nature. 

Building an application is like solving a party chess. You cannot predict the 

entire game, but what you can do instead, is to increase your chances to win, by 

making moves that allow you maximum flexibility and taking the best positions. By 

following the nature we are doing exactly this. 

Let’s identify some requirements of the system.  

The system has to be highly decoupled, modular, allowing adding and 

removing modules without affecting the rest. The modules have to be reusable. Our 

goal is to offer maximum flexibility, detachment, strong cohesion and low cost of 

change.  



Natural-Oriented Programming 

 

85 

The system should be Web/Cloud based and to offer Application Programming 

Interface [24] based on “RESTful” and “RPC” Web Services [25], allowing mobile 

devices connectivity. It is obvious, that this is a client server application, which 

consists of many elements more or less independent. Such system can grow 

infinitely.  

Let’s take a look some modern tendencies. 

The entire Internet can be seen as a supercomputer [26] offering endless 

amount of APIs. The operating system for example has only limited amount of APIs 

which are used mostly to drive the hardware. Internet is the best knowledge 

repository. An application that can communicate with the Internet API’s has almost 

unlimited knowledge base. Such application can run on mobile devices.   

The web turns into a web of services. The last tendency in Internet is 

converting the World Wide Web into a Web of Services, Internet of Things [27]. We 

want to shift the responsibility of interpreting the data and converting it into 

information to the machines. Right now the machines are doing the easiest part of 

the process, they just keep and serve the data. This situation is rapidly changing with 

the newest HTML5, ES5, CSS3 standards and tendencies. The heavy lifting, 

analyzing and interpretation of the information can be done by the machines. They 

don’t only keep data, but become more and more active part of turning this data into 

information. The data turns into information when meaning is add to it. We want to 

follow this tendency. 

If the Artificial Intelligence is to be born, there is a high probability to be born 

in Internet or at least to have very tight connections with it [28]. 

To meet the described above requirements and tendencies of the modern 

systems, the proposal we make is to copy the principles of the nature. The main goal 

is to find a consistent way of building applications, model of a software architecture, 

which gives clear defined structural elements and step by step instructions. Simple 

and easy to understand architecture, which will allow developers without skills and 

experience to participate in the project. The developers will benefit from the known 

structure and less knowledge transfer. The main idea is to copy the nature in order to 

achieve the goal. It is a new paradigm and way of thinking not a framework. We are 

proposing the idea that every application should have clearly distinct and 

recognisable elements (systems): Communication, Unit, Space and Time. As a bare 

minimum we should have at least a communication system. A group of elements 



Stoyan Cheresharov 

 

86 

with a common Communication System form an unit. Having a notion of Time and 

Space in the unit is optional. 

2. Identifying the main principles (methods) of the model 

The research is based on the inspiring paradigms and methods of Object-

oriented, Aspect-oriented Programming, Event-driven, Domain-driven, Test-driven 

development, Design patterns etc.  

The main requirements of the model are: 

 The main requirement is to be simple to understand and use. 

 The model should be inspired by nature and use very well know terms and 

concepts. 

 The system has to be highly decoupled, modular, to allow adding and 

removing modules without affecting the rest.  

 The modules have to be reusable.  

 Our goal is to offer maximum flexibility, separation of concern, strong 

cohesion, loose coupling and low cost of change. 

To meet the described above requirements and tendencies of the modern 

systems, the proposal we make is to copy the principles of the nature.  

We are proposing the idea that every application should follow four principles 

and have clearly distinct and recognizable elements (systems): 

2.1. Communication principle 

Every system should have at least one communication layer for sending and 

receiving signals. If the system consists of many units (modules) each module should 

have its own communication layer. In fact the existence of a communication layer 

separates the groups of elements into an unit. 

Look on creating an application like creating a new universe. So when we ask 

ourselves where do we start, we can look our dimension and ask the same question 

“Where and how everything started in this dimension?”. There is no certain scientific 

answer to this question. We don’t know for certain where and how everything 

started. The answers are based on the theories and are more or less intuitive and 

spiritual. But what we see for certain is the fact that everything is linked in this 

world. There is a communication environment or environments, through which, the 



Natural-Oriented Programming 

 

87 

entities on every level are linked to form the world as we know it. We have no 

choice, but look from the philosophical point of view or even spiritual. Even if we go 

to the spiritual level because there are no scientific answers, we can find that the first 

was the communication. As it is written in the holly bible “In the beginning was the 

Word, and the Word was with God, and the Word was God.” [29] The word is the 

communication. It is the initial vibration. As creators of our own worlds we have to 

follow this model of creation. First we have to create the communication channel. 

Simply said: “Don’t think any further. Start your application by defining a class 

Communication, Event Manager, Connect.” There are many terms used in the 

software engineering for the same thing. In fact this principle is easy to recognize 

everywhere in the modern systems. Even if we start by looking the lowest level in 

the stack – the hardware, we will recognise the communication systems. The signals 

travel through the hardware buses and connect the parts of the computer. The 

microprocessor enters an infinite loop and waits for interruptions trough another 

buses - communication environment. We can use the same approach and build our 

communication buses using the principles of the OOP. If we see the things from this 

perspective it becomes obvious how to “Decouple” a system. 

Communication system is crucial for every organism on the planet. In fact the 

different communication systems allow for separation the constellations of cells 

called organisms. They are united to form more complex organisms and 

environments etc. While the principles described in the paper are not unknown they 

have to be put together and formalised.  

While we are not reinventing the “Event Driven Development” we are giving a 

different perspective and way of thinking, which may help for solving complex 

problems. Also we identify the fact that system build by using this approach is easy 

to extend, maintain and scale. The modules become extremely reusable. 

Communication layer is known under many different names in the applications 

and frameworks. Very often the name “Event Manager” [30] is used to describe a 

system for communication. The processes of sending and receiving signals in this 

environment (carrier, medium) are also called differently. Some examples are 

publish/subscribe, attach/trigger, listen/notify. But generally speaking they have the 

same nature and are just called differently. In fact so called “Event Manager” plays 

the role of the environment through which the signals travel.  

To illustrate the Communication principle we will provide a very simple 

implementation. The class plays the role of the connection/communication 



Stoyan Cheresharov 

 

88 

environment for the signals send back and forth in this level of the system. From this 

class a communication/connection objects can be instantiated for every level (unit) in 

the system. Here the name “EventManager” is used as the name of the class and 

attach/trigger for the names of the main methods.  

 function EventManager() { 

  var listeners = {}; 

   

  this.attach = function(event, listener) { 

   if (!listeners[event]) { 

    listeners[event] = [];    

   } 

   listeners[event].push(listener); 

  }; 

   

  this.trigger = function(event, target, options) { 

   if (!listeners[event]) return; 

   for (var i = 0; i < listeners[event].length; i++) { 

    listeners[event][i](); 

   } 

  } 

 } 

2.2. Unit (Module, Entity, Cell, World) principle 

A common communication layer is a base for building a unit (Module, Entity, 

Cell, World). The common communication layer can be called “internal” for a given 

unit. The communication layer of the parent unit becomes external for the child 

units. Every unit can be built by infinite amount of nested child units. Every child 

unit on its turn can be built by infinite amount of other child units.  

The units can be seen as cells in a living organism. 

The world is infinite in both directions inside and outside. In the micro world 

(inside) we discover more and more particles. But the same is valid in the macro 

world (outside). Our telescopes discover more and more worlds. And the worlds are 

nested. Each world consists of many other smaller worlds. 

The world is infinite in both directions. On every level there is a common 

communication environment. Some examples from the nature can be taken. 



Natural-Oriented Programming 

 

89 

We can make analogy with a flock of fishes or birds. The fishes in the flock 

create a living organism. They act as one creature. What allows them to do that is the 

common environment, the ability to communicate. This bound makes them one 

organism. If we look an individual fish it is like a cell of this organism. But itself the 

fish is separated from the common, by having its own communication/signal system. 

This time the system unites the individual cells of the body. If we look deeper every 

cell is independent from the rest of the cells and if one cell dies the rest of the cells 

continue to live. On the upper level if one of the fishes dies the flock continues to 

exist. This flock on its turn is a part of bigger ecological system and so on and so 

fort. The examples in the nature are endless. So all we have to do is just 

emulate/copy this world in our applications. When a new object gets created it gets 

injected with the reference to the common communication environment on its level. 

So this object can receive and emit signals in this communication environment. On 

its turn the newly created object creates its own world with its own internal 

communication environment. It is internal from its own point of view. But it can be 

external for the internal systems. This environment is shared by all modules building 

our object. On its turn every smaller individual unit (object) can be seen as a cell. 

And so on and so forth. In fact we know very well the event driven development. But 

we are proposing a different perspective. 

 function Unit(externalEventManager, id) { 

… 

// Create an own communication system for this level  

var eventManager = new EventManager(); 

... 

} 

The communication object is mandatory to create a unit (world). Each instance 

of the class “EntityManager” creates a new world with own communication system. 

Each world can have space and time if necessary. 

2.3. Time principle 

There is time in the world of the human. We use it to measure and synchronise 

events. So we may need to create a model of the time. Each communication layer 

could have a notion of its own time. Some very simple applications may not need 



Stoyan Cheresharov 

 

90 

time in their units (worlds). If the units in our virtual world don’t depend on time we 

don’t have to follow the “Time Principle”. This is the reason it is optional. 

If our system needs a notion of time a class representing this entity also can be 

created. The time and all other entities on each level depend on a Communication 

Layer described in 2.1. The time object gets injected with an instance of 

“EventsManager”. A few lines of code are enough to allow the time to start ticking 

in each level of communication in our system 

 function Time(eventManager) { 

  this.startTicking = function(timeperiod) { 

   setInterval(function(){ 

    eventManager.trigger('tick'); 

   }, timeperiod); 

  } 

 } 

2.4. Space principle 

The motivation for creating a space in our system is the fact, that we have space 

in our world. Some units may change their position in the virtual space. If the 

relationships between the units and the units itself depend on their positions in space, 

we have to add a notion of space. There are some applications where the position of 

the units in space is not a concern. In this case we don’t have to create object 

representing the space. Each unit can have its own space. 

The space is an optional entity in our system. If we need a notion of space a 

very simple class can be defined and object can be instantiated on the necessary 

levels. So each world has its own space.  

 function Space() { 

  this.coordinates = []; 

   

  this.placeInSpace = function(x, y, z, entity) { 

   this.coordinates[x][y][z].push = entity; 

  } 

   

  this.getFromSpace = function(x,y,z) {  

   return this.coordinates[x][y][z]; 

  } 



Natural-Oriented Programming 

 

91 

 } 

 

3. Results and tools for building the system 

Prototype software systems were built as a proof of a concept, using the model. 

Each prototype is sound and stable. They have been built from developers without 

skills and experience. The transfer of knowledge was short and easy. The model 

allows each software artefact to be developed and tested separately from the rest of 

the system by different teams. The model enforces strong cohesion and loose 

coupling. The developers can look for clearly defined, standard, familiar software 

artefacts in the software systems. This can make the knowledge transfer much faster 

and can increase the productivity of the software teams. Many different 

programming languages and technologies can be used. There are Expert Systems 

build with “LAMP stack” (Linux, Apache, MySQL, PHP/Perl/Python) [31]. There 

are many other technologies used for the same purpose. 

Our choice is JavaScript. JavaScript has many advantages [32]. The language 

can be used on the server and client side. If we see Internet like a global 

supercomputer we will need a terminal to communicate with it. The web browser 

turns to be the universal User Interface Platform and operating system for 

communication with this global supercomputer. JavaScript is a language especially 

created to run in the browser. It is extremely popular nowadays. There are other 

technologies like Java Applets, Adobe Flash and Microsoft Silverlight created to run 

on the browser, but the newest tendencies is to use JavaScript [33].  Also JavaScript 

can be used on mobile devices as well. This allows the development to be done with 

only one language on all devices operating systems and environments. The code can 

be reused. With JavaScript we can apply Prototype Based, Class Less, Object-

Oriented Event Driven Development. It is the perfect language for applying the 

described in this paper principles. JavaScript can be used for creating Artificial 

Intelligence [34]. It supports many different programming styles. 

We are using the “MEAN stack” [35] (MongoDB, Express, AngularJS, 

NodeJS). The user interface is built with HTML5, CSS3. The DOM tree is used as a 

template (presentation layer of the application). The application on the client side is a 

SPA (Single Page Application). 

The server side offers RESTful API. But RPC services can be offered as well.. 



Stoyan Cheresharov 

 

92 

The system should be able to change its own code based on the environment 

and situations. 

4. The conclusion 

The described model allows the development to be industrialized. The tasks can 

be separated in individual modules and delegated to different developers. The 

communication inside of the modules and between the modules is standard with 

simple and easy to implement interfaces. 

The Natural-Oriented Programming helps to build better software in a 

consistent way. The development of the enterprise applications can become standard 

and trivial process instead of craft and art. The wide adoption of models like this 

could allow the industrialization of the software development. The outcome of the 

software projects will be more predictable and controllable. 

An interesting perspective is to use mathematical formalisms such as Interval 

Temporal Logic, Petri Nets, Generalized Nets and others to describe and abstract the 

terms in the model. Using models like the described one, could allow automatic code 

and system generation. The combination with Artificial Intelligence (AI) creates new 

exciting opportunities. 

Acknowledgements 

This work is partially supported by the FP17-FMI-008 project of the Scientific 

Fund of the Plovdiv University Paisii Hilendarski, Bulgaria. 

References 

[1] M.A.F de Souza, M.A.G.V Ferreira, Designing reusable rule-based 

architectures with design patterns, Expert Systems with Applications, Vol. 23, 

Issue 4, November 2002, Pages 395–403. 

[2] Bruce Douglass (2013) Chapter 4 – Software Design Architecture and Patterns 

for Embedded Systems. Software Engineering for Embedded Systems, 2013, 

Pages 93–122. 

[3] Apostolos Ampatzoglou, Apostolos Kritikos, George Kakarontzas, Ioannis 

Stamelos, An empirical investigation on the reusability of design patterns and 



Natural-Oriented Programming 

 

93 

software packages, Journal of Systems and Software, Vol. 84, Issue 12, 

December 2011, Pages 2265–2283. 

[4] Maria Paasivaara, Casper Lassenius, Communities of practice in a large 

distributed agile software development organization case ericsson, Information 

and Software Technology, In Press, Accepted Manuscript, Available online 26 

June 2014. 

[5] Xiaodan Yu, Stacie Petter, Understanding agile software development practices 

using shared mental models theory, Information and Software Technology, 

Vol. 56, Issue 8, August 2014, 911–921. 

[6] Diana Kirk, Ewan Tempero, A lightweight framework for describing software 

practices. Journal of Systems and Software, Volume 85, Issue 3, March 2012, 

Pages 582–595. 

[7] Varun Gupta, Jitender Kumar Chhabra, Dynamic cohesion measures for object-

oriented software, Journal of Systems Architecture, Vol. 57, Issue 4, April 

2011, 452–462. 

[8] Istehad Chowdhury, Mohammad Zulkernine, Using complexity, coupling, and 

cohesion metrics as early indicators of vulnerabilities, Journal of Systems 

Architecture, Vol. 57, Issue 3, March 2011, 294–313. 

[9] Jehad Al Dallal, Lionel C. Briand (2010) An object-oriented high-level design-

based class cohesion metric, Information and Software Technology, Vol. 52, 

Issue 12, December 2010, 1346–1361. 

[10] P.C. Jha, Vikram Bali, Sonam Narula, Mala Kalra, Optimal component 

selection based on cohesion & coupling for component based software system 

under build-or-buy scheme, Journal of Computational Science, Vol. 5, Issue 2, 

March 2014, 233–242. 

[11] Pekka Alho, Jouni Mattila, Software fault detection and recovery in critical 

real-time systems: An approach based on loose coupling, Fusion Engineering 

and Design, In Press, Corrected Proof, Available online 14 May 2014. 

[12] Istehad Chowdhury, Mohammad Zulkernine, Using complexity, coupling, and 

cohesion metrics as early indicators of vulnerabilities, Journal of Systems 

Architecture, Vol. 57, Issue 3, March 2011, 294–313. 

[13] Michael Stal, Chapter 3 – Refactoring Software Architectures. Agile Software 

Architecture, 2014, 63–82. 



Stoyan Cheresharov 

 

94 

[14] Mohammad Alshayeb, Empirical investigation of refactoring effect on software 

quality, Information and Software Technology, Vol. 51, Issue 9, September 

2009, 1319–1326. 

[15] Bruce Anderson, Object-oriented programming, Microprocessors and 

Microsystems, Vol. 12, Issue 8, October 1988, 433–442. 

[16] Francesco Logozzo, Agostino Cortesi, Abstract Interpretation and Object-

oriented Programming: Quo Vadis?, Electronic Notes in Theoretical Computer 

Science, Vol. 131, 24 May 2005, 75–84. 

[17] David Robinson, 1 – Introduction to Aspect Oriented Programming (AOP). 

Aspect-Oriented Programming with the e Verification Language, 2007, 1–30. 

[18] Pascal Fradet, Ralf Lämmel, Special issue on foundations of aspect-oriented 

programming, Science of Computer Programming, Vol. 63, Issue 3, 15 

December 2006, 203–206. 

[19] Gökhan Engin, Burak Aksoyer, Melike Avdagic, Damla Bozanlı, Umutcan 

Hanay, et al., Rule-based Expert Systems for Supporting University Students, 

Procedia Computer Science, Vol. 31, 2014, 22–31. 

[20] Joan Marc Llargues Asensio, Juan Peralta, Raul Arrabales, Manuel Gonzalez 

Bedia, Paulo Cortez, et al., Artificial Intelligence approaches for the generation 

and assessment of believable human-like behaviour in virtual characters, Expert 

Systems with Applications, Vol. 41, Issue 16, 15 November 2014, 7281–7290. 

[21] S. Sahin, M.R. Tolun, R. Hassanpour, Hybrid expert systems: A survey of 

current approaches and applicationsReview Article, Expert Systems with 

Applications, Vol. 39, Issue 4, March 2012, 4609–4617. 

[22] Mehdi Piltan, Erfan Mehmanchi, S.F. Ghaderi, Proposing a decision-making 

model using analytical hierarchy process and fuzzy expert system for 

prioritizing industries in installation of combined heat and power systems, 

Expert Systems with Applications, Vol. 39, Issue 1, January 2012, 1124–1133. 

[23] B.A. Akinnuwesi, Faith-Michael E. Uzoka, Abayomi O. Osamiluyi, Neuro-

Fuzzy Expert System for evaluating the performance of Distributed Software 

System Architecture, Expert Systems with Applications 40, 2013, 3313–3327. 

[24] Dimitris N. Chorafas, Heinrich Steinmann, CHAPTER 11 – Application 

Programming Interface, Formats and Protocols, and Remote Data Access, 

Solutions for Networked Databases, 1993, 185–198. 

[25] Mauricio Arroqui, Cristian Mateos, Claudio Machado, Alejandro Zunino, 

RESTful Web Services improve the efficiency of data transfer of a whole-farm 



Natural-Oriented Programming 

 

95 

simulator accessed by Android smartphones, Computers and Electronics in 

Agriculture, Vol. 87, September 2012, 14–18. 

[26] Toni Giorgino, M.J. Harvey, Gianni de Fabritiis, Distributed computing as a 

virtual supercomputer: Tools to run and manage large-scale BOINC 

simulations, Computer Physics Communications, Vol. 181, Issue 8, August 

2010, 1402–1409. 

[27] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, Marimuthu 

Palaniswami, Internet of Things (IoT): A vision, architectural elements, and 

future directions, Future Generation Computer Systems, Vol. 29, Issue 7, 

September 2013, 1645–1660. 

[28] Alexander Bolonkin, 13 – Setting God in a Computer-Internet Net, Universe, 

Human Immortality and Future Human Evaluation, 2012, 115–122. 

[29] http://biblehub.com/john/1.htm 

[30] Sang Seok Lim, Kyu Ho Park, ECEM: an event correlation based event 

manager for an I/O-intensive application, Journal of Systems and Software, 

Vol. 74, Issue 3, 1 February 2005, 229–242. 

[31] George J.Moridis, Matthew T. Reagan, Heidi Anderson Kuzma, Thomas A. 

Blasingame, Y. Wayne Huang, et al., SeTES: Aself-teaching expert system for 

the analysis, design, and prediction of gas production from unconventional gas 

resources, Computers & Geosciences 58, 2013, 100–115. 

[32] William J. Buchanan, 26 – JavaScript, Software Development for Engineers, 

1997, 415–436. 

[33] Jack Moffett, Chapter 9 – Looking Toward the Horizon, Bridging UX and Web 

Development, 2014, 163–188. 

[34] http://mind.sourceforge.net/js.html 

[35] http://mean.io/#!/ 

 
Faculty of Mathematics and Informatics 

Plovdiv University 

236 Bulgaria Blvd,  

Plovdiv 4003, Bulgaria 

E-mail: cheresharov@uni-plovdiv.bg 

 

 

 



Stoyan Cheresharov 

 

96 

ЕСТЕСТВЕНО-ОРИЕНТИРАНО ПРОГРАМИРАНЕ 

 
Стоян Черешаров 

 
Резюме. Настоящата статия описва модел за софтуерна архитектура за 

изграждане на софтуерни системи наречен „Естествено-ориентирано 

програмиране“. Съществуващите парадигми на обектно-ориентираното, 

аспектно-ориентираното, събитийното програмиране, разработката базирани 

на тестове и предметната област, шаблоните за дизайн както и други 

изследвания не отговарят напълно на въпроса как трябва да изглежда 

цялостната архитектура на една софтуерна система. Ние предлагаме 

обобщен модел за софтуерна архитектура и нейните четири принципа. Те 

включват принципите на комуникация, единица, време и пространство. Това 

е нова парадигма и начин на мислене. Бяха изградени прототипни софтуерни 

системи като доказателство за концепцията, използвайки модела. Всеки 

прототип е надежден и стабилен. Моделът позволява разработването на 

корпоративни приложения да стане стандартен и тривиален процес вместо 

занаят и изкуство. Широкото приемане и използване на подобни модели би 

могло да позволи индустриализацията на разработката на софтуер. 

 


