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FLUXONS CREATION IN JOSEPHSON JUNCTIONS

T.L.Boyadjiev|, H.T.Melemov

Abstract. The static distributions in a system of two multiply con-
nected Joshepson junctions with equal lengths and different amplitudes
of Josephson currents 0-j.JJ is modeled analytically as well as numer-
ically. A particular case of the studied systems is the 0-wJJ junction.
The exact analytic solutions are constructed on an “infinite” 0-j.JJ by
the help with the oneflaxons solutions in homogeneous and j. junctions.

The existence of this structure of C*-smooth distributions (semiflaxons) is
demonstrated. The distributions are considered as a result of a nonlinear
relation of flaxons in sub-domains of their common bound.
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1. Statement of the problem

The static distributions ([1]) of magnetic flux ¢(z) in one layer junction
with different amplitudes of Josephson currents j.(z) satisfy the following non-
linear boundary value problem

(1'13') —Pax +jc(m) singp—’y = Oa U (—L,L),
(1.1b) @o(£L) = he,

where h. is the outer magnetic field, v is the outer current.
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The solutions of (1.1) depends on the physics’ coordinate z, as well as on
the parameters L, h., v and j, i.e., ¢ = @(z,p), where by p = {L, he,7, je}»
p € P C R3 is denoted the 4-vector of the parameters of the model.

Note that in the paper, we will write the dependence on p only in the case
when it is necessary.

The function j.(2) models possible non-homogeneous type of barrier layers.
For a homogeneous junction the equality j.(z) = 1 holds. In the case of
junctions of non homogeneous type with a length 26 at the center of the junction
the following relations are true:

(12 i) ={ T2

At points # = 4§ the solutions of (1.1) are Cl-smooth .
For multiply connected junctions we could write

9 i ={ o Lo

where the parameter j. € [-2,2) and at point = 0 the solutions of (1.1) are
C' smooth. For j. = —1 the problem reduces to a problem for 0-wJJ -junction.

The static distributions of the magnetic flux in Josephson systems of two
multiply connected Josephson junctions with equal lengths and different am-
plitudes of Josephson currents 0-j.JJ is described by the following nonlinear
problem:

(1.4a) —@ozz Tsinpy —7=0, ze€(-10),
(1.4b) —Qjomz +Jesing;, —vy=0, x€(0,1).

The magnetic flux (po, ¢;.) and the inner magnetic field (o z,®;),..») at
the center x = 0 satisfy the following conditions for continuity

(1.5a) ©0(0) — ¢;,(0) =0,
(1.5b) ©0,2(0) — ¢j.,2(0) = 0.

For a structure with a finite length [ < oo in the case of geometry with
overlapping ([1]) the boundary conditions

(1.6a) ©0,2(=1) = he,
(16b> (ch,z(l) = he7
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hold.

The relations (1.4) - (1.6) define a nonlinear boundary value problem,
corresponding to the considered model of 0-5.JJ .

The stability of any distribution of the magnetic flux (po(z,p), ;. (x,p))
in 0-5.JJ for various parameters p ([3]), are defined by the sign of the minimal
eigenvalue \A,;, of the corresponding Sturm-Liouville problem

(1.7a) Yo,2(=1) =0,

(1.7b) —0,0x +COSo Y = Mo, € (—1,(),
(1.7¢) ¥o(0) — ¥;,(0) =0,

(1.7d) Y0,0(0) — ¥;.,2(0) = 0,

(1.7e) ~Vj, wx + Jecospj, b =N, w € ((1),
(1.71) ;. (1) =0

l

0
(1.7g) /wl(as)dz + /wg(x)da: —-1=0.
2

0

On the finite interval [—I,!] the problem (1.7) has bounded from below
discrete specter Amin = Ao < A1 < A1 < ... < Ay < ... ([4]). At the same
time the eigenvalue \; corresponds to the unique eigenfunction (v, ¥;..:),
n =0,1,2,..., which satisfies the condition (1.7g).

For a minimal eigenvalue A,,;;, > 0 the corresponding solution (gol(:n,p),
¢;.(z,p)) of the nonlinear boundary value problem (1.4) - (1.6) is stable with
respect to small space-time perturbations. For a minimal eigenvalue A,;, < 0,
this solution is non stable. The value A, = 0 corresponding to the point of
bifurcation, at which the stable solutions become unstable and vice verse.

The main physics’ characteristics of the solutions of the problem (1.4) are
the fool energy described by

0
1
(1.8) Fly] = / [2903,1 +1—cospo — %D} dz+
2
/ 1
/ [QSD?C,x +Je(l = cos@j.) =y | dz — heAp.
0
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The fool magnetic flux through the junction is described by

0 1
19) Ap= o | [ena@det [orae)do| = 503~ eol-D).
~1 0
and the average magnetic flux is
0 l
(1.10) Nl = 5= | [ ntaldo+ [ s (@)iz) .
—1 0

The average current of interactions of distrutions of the magnetic flux in
the junction with nonhomogeouty is given by

l
(1.11) Jple] = jc2l ! /Singadx.
0

In the paper the exact analytic solutions of the system (1.4) will be ob-
tained in the case of “infinite” 0-j.JJ . The oneflaxons distributions in “infinite”
homogeneous and j. junctions will be obtained.

The static distributions of the magnetic flux in 0-j.JJ for zero outer cur-
rent v = 0 will be given as a result of the nonlinear interaction between the
distributions in “virtual” homogeneous and j. junctions at point x = 0. From
mathematical point of view this means that for any given solution of the non-
linear boundary value problem (1.4) - (1.6) we obtain the solutions of the
corresponding boundary value problem (1.1).

For numerical solving of the nonlinear boundary value problem (1.4) -
(1.6) a continuous analogue of Nyuton’s method (CAMN) as well as the spline-
collocation method will be applied. For the obtained solutions in 0-j.JJ their
corresponding distributions in homogeneous and j.-junctions are obtained. The
corresponding Cauchy problems with an additional condition are solved.

2. Main results

2.1. Semiflaxons in structures of parallel connected junctions with
different currents, constructed by oneflaxons

Fix a distribution in any of both junctions with different critical currents.
At the junction 0-j.JJ , constructed by their multiply connection, new state
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correspond them, which are resulting on “glue” of distributions of in interacted
junctions at point z = 0.

This method give us an opportunity to obtain the exact solutions in the
case of “infinite” 0-j.JJ junction where the conditions are from the type (1.4)

for v = 0, he = 0 and I — oo. For constructing the semiflaxons we use
oneflaxons solutions in “infinite” homogeneous junction j.(z) = 1
(2.1) O} (r) = 4arctanexp {x + &},

where ¢; is a coefficient of translation of the centered flaxon (¢, = 0) and its
corresponding oneflaxon solutions in “infinite” junction with an amplitude of
Josephson current j. > 0

(2.2) <I>}C (x) = 4arctan exp {\/]76 x + Eg} )

At the point © = 0 there are conditions for continuity of the function (1.5a)
and its first derivative (1.5b). Therefore, the obtained exact analytic solutions
in 0-kJJ are not twice smooth.

The obtained semiflaxons in 0-j.JJ will be denoted by [®! A ®1]y; 7 [®!V
®1]y;, and the corresponding their state in j. — 0 junction by [®' A ®!],o and
(@1 v @']j0.

In the case j. € [0,2) (with an exception of the trivial case j. = 1) from
the conditions for continuity it follows that in an “infinite” 0-j.JJ there are no
semiflaxons [®! A ®']g; constructed by oneflaxon solutions (2.1) and (2.2).

In the case j. € [-2,0) the nonlinear problem (1.4) for v =0, h, = 0 and
I — oo will be written in the form

(2.3a) — 0,0 +singy =0, z € (=1,0),
(2.3b) —@jozz + (—Jo)sin(g;, +m) =0, x € (0,1).

Oneflaxons solutions in “infinite” junction with an amplitude of Josephson
current j. € [—2,0) are from the type

(2.4) <I>}C () = 4 arctan exp {\/ —Je T+ fg} -,

The conditions (1.5a) and (1.5b) lead to the following system of equations
for €1 and 52

exp{{a} — 1
1+ exp{&}’

exp{la} _ — exp{éi}
(2.5b) 1+ exp{2&} ml +exp{2&}’

(2.52) exp{&1} =
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Simplify the system (2.5) and obtain the quadratic equation
(2.6) ¥ —2y—jey—1=0,

where y = exp{&2}. The roots of the quadratic equation are y1 2 = /—jc =
/1 —=j.. In order to have a solution of system, it is necessary the right side
of the equation (2.5a) be positive. Therefore, the condition exp{&:} € (1, 00)
holds. Then, for the positive root of the quadratic equation, the solution of the

system (2.5) will be
§o = In(v/—je + /1 je)s

where the value of &; is obtained by(2.5a).
The analytic expression of the distribution in 0-j.JJ is by the type:

| 4darctanexp{z — &}, € (—o0,0],
27) (2" A2o(z) = { 4 arctan exp {\/fjclx +&Y -7, we0,00).

The polyflaxon in j. — 0 junction is [®! V ®1]:

_ [ darctanexp {y/=jex + &} — 7, x € (—00,0],
(28)  [@' V@) = { 4arctanexp {z — & }, 2x € [0, 00).

Differently than the homogeneous junction for normal fool magnetic fluxes of
semiflaxons (2.7) and (2.8) we obtain:

AR A Do, =

Y

APV @] =

W N =

For j. = 1 we obtain the case of 0-7JJ .

Let us now consider the distribution @} (2.1) in a homogeneous junction
and a flaxon in a junction with an amplitude j., which is obtained by a trans-
lation of <I>}C (2.2) with respect to the axis y with 27. By this way we obtain
one more pair of semiflaxons in 0-j.-junction and j.-0-junction.

The conditions (1.5a) and (1.5b) lead to the following system of equations
for & and &

exp{éa} +1
1 —exp{&}’

exp{la} _ — exp{éi}
(2.9b) 1+ exp{2&} ml +exp{2&}’

(2.9a) exp{&1} =
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Simplify the system (2.9) and obtain the quadratic equation

(2.10) v +2y/—jey—1=0,

wherey = exp{&2}. The roots of the equation (2.10) are y12 = —v/—jc £
V1= j.. From the condition exp{&2} > 0, we obtain the following expression
for the solution of the system (2.9)

52 = ln(_ V _jc +v1- jC)a

where the coeflicient of translation &; in this case is obtained by (2.9a).
The analytic expressions in 0-kJJ for the obtained distributions are

[ darctanexp{z+ &}, =€ (—00,0],
(2.11) [@'v (I)l]Oj(x) o { 4 arctan exp {\/—jclx — 52} +7, x€][0,00).

The semiflaxon in k-0-junction is [®1 vV ®!] 4 and

_ 4arctanexp{\/fjczz:f§ }+7r, x € (—00,0],
(212) [27A®Tjo(w) = { darctanexp {z + &1}, er € [0, 00).

2.2. Representation of semiflaxons in 0—j,. junctions as a result of
flaxons in homogeneous and j. junctions

We will consider the static distributions of magnetic flux in finite 0-j.JJ
for zero magnetic field v = 0, as a result of a nonlinear interaction of the
distributions in “virtual” homogeneous and a junction with an amplitude of
Josephson current j.. For this purpose we will formulate the conditions that
will allow us to present any solution of the nonlinear boundary value problem
(1.4) - (1.6) as a result of the interactions between the solutions of the boundary
value problem (1.1) in “virtual” homogeneous and j. junctions with a length
different than the length of the initial junction.

Indeed, let (@0, ¢;.) is a solution of the nonlinear boundary value prob-
lem (1.4) - (1.6) in 0-j.JJ , where @o(z) is the solution from the left, i.e. in
homogeneous part, and ¢, (x) — is in the right part, i.e. in j. half. Then the
conditions for continuity has the form:

(2.13a) ©0(0) = ¢;.(0),
(2'13b) ®o,z (0) = Pje,x (0)

The function ¢g(z), defined on (—,0), is a solution of the equation (1.1a) with
boundary conditions (1.6a) and (2.13b), and satisfies the additional condition
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(2.13a). To find the solution of (1.1) in a homogeneous junction, which takes
part in the construction of (¢g, @), we obtain a solution ¢q(x) of the equation
(1.1a) for j. = 1, which satisfies the following conditions

¢0(0) = 900(0)7 ¢O,$(O) = @O,x(o)a

$0,e(lo) = he,

where [lp is an unknown constant.

The function ¢, (x), defined on (0,1), is a solution of the equation (1.1a)
with boundary conditions (1.6b) and (2.13b), and satisfies the additional con-
dition (2.13a). In this case to obtain the solution in j. junction we need the
solution ¢;, (x) of the equation (1.1), for which the conditions

$;.(0) = ©;.(0),  ¢5,.(0) = pj, (0),

¢7C7w(_l7c) = h(i)

hold, where [;, is an unknown constant.

By this way the problem for finding solutions in homogeneous and j. junc-
tions is reduced to Stephan’s problem with unknown right (or left) bound. For
solving of the problem, there are two different approaches.

Approach 1. Cauchy problem with an additional condition.
For obtaining the function ¢g(x) we solve the following initial value prob-
lem

(2.14&) —¢0,42 + Sin $o=0, =x¢ (07 ZO);
(2.14b) $0(0) = 0(0),
(214C) d)O,x(O) = SDO,I(O)a

with an additional condition ¢g ,(lo) = he, where [y is an unknown constant.
The function ¢,,(z) is a solution of the following initial value problem

(2.15a) — @i azx + Jesing;, =0, z€ (—lg,0),
(2.15b) $;.(0) = ¢;,(0),
(2.15¢) G..2(0) = ¥j..2(0),

with an additional condition ¢;, ,(—Ix) = h., where [;, is an unknown constant.
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Approach 2. Nonlinear problem with eigenvalues.
In the homogeneous junction the function ¢g(x) could be obtained as a
solution of the problem for eigenvalues

(2.16a) $0(0) = ¢0(0),

(2.16b) $0,2(0) = ©0,2(0),

(2.16¢) —0,4z +singy =0, € (0,l),
(2.16d) $0.c(lo) = he,

where [y is an unknown constant.
The function ¢;, (x) is a solution of the following problem for eigenvalues:

5. (0) = #;.(0)
$je.2(0) = ©j..2(0),
2.17c) Pjeax +Jesing;. =0, x € (=lx,0),
2.17d) Pjeo(=lx) = he,
where [;_ is an unknown constant.
If we obtain functions ¢o(z) and ¢; (z) by one of the above described

approaches, then we could solve the set up Stephan’s problems.
So, we construct the function ®¢(x) by

_ P (:U), HAS (*I’O]
o(w) —{ o), e (0.1]

which is a solution of the problem:

(2.18a) By, +sin® =0, z€(-11),
(2.18b) . (=1) = he,
(218C) q)z(lo) = hEa

Analogously, we define a function ®;, (z) by

_ #j.(x) z € (=1, 0]
‘I’jc“”)—{ (@) we (0]

which is a solution of the problem:

2.19a &+ jesin® =0, xe€(—1;,I1
( ) J ) ( Jeo )a
(2.19b) D (—lr) = he,

(2.19¢) D,.(1) = he.
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The solution (o, ¢;.) of the nonlinear boundary value problem (1.4) — (1.6)
in 0-j.JJ is a result of the interaction of the solution ®y(x) of the problem
(2.18) and the solution ®; (x) of the problem (2.19). We note that all three
boundary value problems are defined on different intervals.

3. Numerical experiment

We will consider the static distributions of the magnetic flux in 0-j5.JJ for
zero outer current (v = 0), resulting of the nonlinear interaction of the distri-
butions in “virtual” homogeneous and j.-junctions at point x = 0. From math-
ematical point of view this means that for any given solution of the nonlinear
boundary value problem (1.4) - (1.6) we obtain the solutions of the boundary
value problem (2.18) and (2.19).

For numerical solving of the nonlinear boundary value problem (1.4) -
(1.6) a continuous analogue of Nyuton’s method (CAMN) as well as the spline-
collocation method will be applied. For the obtained solutions in 0-wJJ their
corresponding distributions in homogeneous and 7-junctions are obtained. The
corresponding Cauchy problems with an additional condition are solved. We
will study the influence of the outer magnetic flux on the basic stable semiflax-
ons in 0-7JJ and the corresponding “virtual” junctions.

For zero outer current (v = 0), the solutions of homogeneous and j. junc-
tions are presented by elleptic functions and therefore, the Cauchy problems
with additional conditions (2.14) and (2.15) has countable set of solutions.
Consider the distributions of the magnetic flux in vertual homogeneous and j.
junctions, which correspond to the initial semiflaxon in 0-j.JJ . The solutions
which are determined by them, depend on the values oft the basic numerical
characteristics - the functional of fool energy, thefool magnetic flux and the
average magnetic flux.

At 0-j.JJ with length 2] = 7 we will consider the basic semiflaxon. Denote
it by S = ®! A ®!, where in virtual homogeneous and j. junctions we have
oneflaxons solutions.

On fig. 3.1 by the continuous curve (a, a) is graphed the semiflaxon S1! for
zero outer magnetic field h, = 0 and amplitude of Josephson current j. = —0.5.
Oneflaxons in virtual homogeneous and j. junctions are graphed by the curves
(a,b) and (b,a). Note that oneflaxons are solutions of the nonlinear boundary
value problems (2.18) and (2.19).

The inner magnetic field of S»'! and the oneflaxons for j. = —0.5 are
graphed on fig. 3.2.
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KOHCTPYNUPAHE HA ®JIAKCOHUN B
JA2KOSE®PCOHOBU KOHTAKTHA

’TO,ZLOp Bosmxkues |, Xpucro Mememon

Pesiome. B nacrosmara cratus ce n3cjieiBaT aHAJATHIHO U IUCIEHO CTa-
TUYHUTE PA3IPEIEICHI HA MATHUTHAS OTOK B JIBOIKA IOCJIEI0BATEHO CBbP-
3ann J12k03e(COHOBU KOHTAKTH C €THAKBA [IbJKAHA U PA3INYHA aMIJTUTY/ I8 Ha
Izxo3edconoBus Tok 0-j.JJ . Hacren ciy4ait Ha Te3u cTpyKTypu ca 0 — 7 KOH-
takTuTe. [losydenn ca aHAIUTUYHN PEIIEHNs HA PA3IIPEIEICHUs Ha MATHUTHUST
moToK B “Oe3kpaen” 0-j.JJ ¢ momornira Ha egHO(DIIAKCOHHUTE Pa3IpeIe/IeHns B
XOMOT'€HEH U j. KOHTAKT.

ITonyuennTe pemenns Ha MOJENa 3a Te3u cTPyKTypn ca Cl-rmagku. B cra-
THSATA pa3lpejie/IeHusITa Ha MArHUTHHS IIOTOK Ce PaslJIeXKIAT KaTo pe3yJiTaT
OT HEJIMHEIHOTO B3aMMOJIeiicTBIE Ha (DJIAKCOHU B JBaTa CyOKOHTAKTa B 00IIATA,
UM TDAHWUIIA.
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