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Abstract. Let G be an abelian group and R be a commutative ring
with identity of prime characteristic p. Denote by RG the group algebra
of G over R, by V (RG) the group of normalized units in RG, by Gp the
p-component of G, by tG the torsion subgroup of the group G and by
R∗p the p-component of the unit group R∗ of the ring R. We prove that
if G is a direct factor of V (RG), then V (RG)/G is a p-group if and only
if the pair (R, G) satisfies exactly one of the following conditions (*):

1) G = Gp;

2) G 6= Gp, tG = Gp and the ring R is indecomposable;

3) p = 3, R∗ = 〈−1〉 ×R∗3, G = A×G3, |A| = 2 and

4) p = 2, R∗ = R∗2, G = A×G2, |A| = 3 and the equation X2+XY +Y 2 =
1+N(R) has only the trivial solutions in the quotient ring R/N(R), where
N(R) is the nil-radical of R.

Let R be a direct product of m commutative perfect rings Ri and let
G be a direct factor of V (RiG), i=1,2,...m. Then we give a complete
description, up to isomorphism,

(i) of the maximal divisible subgroup of V (RG) if every pair (Ri, G),
i=1,2,...m, satisfies exactly one of the conditions (∗) and

(ii) of V (RG) if V (RiG)/G, i=1,2,...m, are simply presented p-groups
and the ring R is without nilpotent elements.
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1. Introduction

Let RG be the group algebra of an abelian group G over a commutative
ring R with identity. Denote by U(RG) the multiplicative group of RG and by
S(RG) the Sylow p-subgroup of the group V (RG) of normalized units in RG,
that is the p-component of V (RG). The investigations of the group S(RG)
begin with the fundamental papers of Berman (1967a and 1967b) in which
a complete description of S(RG), up to isomorphism, is given when G is a
countably infinite abelian p-group and R is a countable field of characteristic p
such that if G is not a restricted direct product of cyclic groups, then the field
R is perfect. Further Mollov (1977 and 1981) calculates the Ulm-Kaplansky
invariants fα(S) of the group S(RG) when G is an arbitrary abelian group
and R is a field of positive characteristic p. Let R be a commutative ring with
identity of prime characteristic p. Nachev and Mollov (1980) calculate the
invariants fα(S) with the only restriction G to be an abelian p-group. Nachev
(1995) calculates the invariants fα(S) without restrictions on G. Moreover, in
all indicated cases the authors give a full description, up to isomorphism, of
the maximal divisible subgroup of S(RG).

Let G be an abelian p-group and let K be a perfect field of characteristic p.
May (1988) proves that S(KG) is simply presented if and only if G is a simply
presented abelian p-group. Therefore, if G is a simply presented abelian p-
group, then the Ulm-Kaplansky invariants fα(S) of the group S(KG) together
with the description of the maximal divisible subgroup of S(KG) give a full
description, up to isomorphism, of the group S(KG).

Kuneva (2006) gives a description of the maximal divisible subgroup of
V (RG) when G is a p-mixed abelian group and the ring R is a direct product
of n commutative indecomposable rings with identity of characteristic p, n ∈ N.

Using a result of May, Mollov and Nachev (2010) and May (2008), Mollov
and Nachev (2010a) give a full description, up to isomorphism, of the group
V (RG) when R is a direct product of m perfect fields of characteristic p, m ∈ N,
G is a p-mixed abelian group, Gp is simply presented and either (i) G is splitting
or (ii) G is of countable torsion free rank.

The present paper continues the mentioned investigations of Mollov and
Nachev (2010a) of V (RG).

2. Some concepts and preliminary results

We recall some well known definitions. Let G be an abelian group and
p be a prime. The group G is called p-mixed if the torsion subgroup of G is
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p-primary. We use the signs
∐

and Π for a mark of a coproduct of groups and a
direct product of groups (algebras), respectively. Denote by

∐
α

G a coproduct of

α copies of G, where α is a cardinal number. It is not hard to see that if α is an
ordinal, then (Gp)pα

= (Gpα

)p. Hence we can denote Gpα

p = (Gp)pα

= (Gpα

)p.
The abelian group terminology is in agreement with the books of Fuchs

(1970 and 1973).
Let R be a commutative ring with identity. We denote R(p) = {r ∈ R|rp =

0}. The group algebra RG is called modular if the characteristic of R is a prime
number p. The following results are well known.

Lemma 2.1. (Kuneva, Mollov and Nachev, 2009) If G is an abelian group
and R is a commutative perfect ring with identity of prime characteristic p, then
G is p-balanced in V (RG).

The following result is due to Nachev (1995).

Theorem 2.2. If R is a commutative ring with identity of prime char-
acteristic p, G is an abelian group and α is the first ordinal with the property
Rpα

= Rpα+1
and Gpα

= Gpα+1
, then

dS(RG) ∼=
∐

λ

Z(p∞),

where
1) λ = max(|Rpα |, |Gpα |), if Gpα

p 6= 1;
2) λ = max(|Rpα

(p)|, |Gpα |), if Gpα

p = 1, Gpα 6= 1 and Rpα

(p) 6= 0 and
3) λ = 0, that is dS(RG) = 1, if Gpα

p = 1 and either Gpα

= 1 or Rpα

(p) =
0.

Let Ri, i ∈ I, be a system of rings and let G be an arbitrary group. If
a ∈ (Πi∈IRi)G, then

a =
∑

g∈Ga

agg, ag ∈ Πi∈IRi,

where Ga is a finite subset of G. Mollov and Nachev (2010) note that Ga and
the system {ag|g ∈ Ga} are defined identically from the element a. Besides,
ag = (..., agi, ...) where agi ∈ Ri for every i ∈ I and every g ∈ Ga. They define
a map

(2.1) ϕ : (Πi∈IRi)G → Πi∈I(RiG)
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by

(2.2) ϕ(a) = (...,
∑

g∈Ga

agig, ...).

It is not hard to see that ϕ is a natural injective homomorphism of R-
algebras.

Proposition 2.3. (Mollov and Nachev (2010a)) The homomorphism (2.1)
of R-algebras, defined by (2.2), is an isomorphism of R-algebras if and only if
either I is a finite set or G is a finite group.

Proposition 2.4. (Kuneva, Mollov, Nachev (2009)) ”Let G be an abelian
group and let R be a finite commutative ring with identity of prime charac-
teristic p without nilpotent elements. If α is any ordinal and Gpα

is finite,
then

fα(S/Gp)) = fα(S)− fα(Gp),

fα(S) = (|Gpα | − 2|Gpα+1 |+ |Gpα+2 |)logp|R|. ”

Theorem 2.5. (Danchev (2004, Theorem 6, (ii)) ”Suppose 1 6= G is an
abelian group and R is an unitary perfect commutative ring without nilpotent
elements in prime characteristic p .Then ...

(ii) If |R| ≥ ℵ0 or |Gpσ | ≥ ℵ0 for some ordinal σ,

fσ(S(RG)/Gp) =

{
max(|R|, |Gpσ |) when |Gpσ

p | 6= 1 and Gpσ 6= Gpσ+1
;

0, when Gpσ

p = 1 or Gpσ

= Gpσ+1
.”

3. Main results

Theorem 3.1. Let G be an abelian group and let R be a commutative
ring with identity of prime characteristic p. Suppose that G is a direct factor
of V (RG). Then V (RG)/G is a p-group if and only if G satisfies exactly one
of the following four conditions (*):

1) G = Gp;
2) G 6= Gp, tG = Gp and the ring R is indecomposable;
3) p = 3, R∗ = 〈−1〉 ×R∗3, G = A×G3, |A| = 2 and
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4) p = 2, R∗ = R∗2, G = A×G2, |A| = 3 and the equation X2 +XY +Y 2 =
1+N(R) in the quotient ring R/N(R) has only the trivial solutions in R/N(R).

Proof. Necessity. Let V (RG)/G is a p-group. Since G is a direct factor of
V (RG) then V (RG) = G × T . Consequently, T ∼= V (RG)/G is a p-subgroup
of V (RG). Therefore, T ⊆ S(RG) and V (RG) = GT ⊆ GS(RG) ⊆ V (RG).
Hence V (RG) = GS(RG). By a result of Mollov and Nachev (2010b) exactly
one of the conditions (*) holds.

Sufficiency. Let G satisfies exactly one of the conditions (*). Consequently,
by a result of Mollov and Nachev (2010b), V (RG) = GS(RG) is fulfilled and

V (RG)/G = GS(RG)/G ∼= S(RG)/Gp,

that is V (RG)/G is p-group. ¤

Corollary 3.2. Let R be a commutative ring of prime characteristic p
and G be a direct factor of V (RG). Then V (RG)/G is a p-group if and only
if V (RG) = GS(RG).

The proof follows directly by Theorem 3.1 and by results of Mollov and
Nachev (2010b). ¤

If exactly one of the conditions (*) holds then we shall say that the pair
(R,G) satisfies exactly one of the conditions (*).

Proposition 3.3. Let G be an abelian group and let R be a commutative
perfect ring with identity of prime characteristic p. Then for the maximal divis-
ible subgroup dT of T = S(RG)/Gp the following holds: if α is the first ordinal
such that Gpα

= Gpα+1
, then dT = S(RGpα

)Gp/Gp, dT ∼= S(RGpα

)/Gpα

p and

dT ∼=
∐

λ

Z(p∞),

where
1) λ = max(|R|, |Gpα |), if Gpα

p 6= 1;
2) λ = max(|R(p)|, |Gpα |), if Gpα

p = 1, Gpα 6= 1 and R(p) 6= 0 and
3) λ = 0, that is dT = 1, if Gpα

p = 1 and either Gpα

= 1 or R(p) = 0.

Proof. Since, by Lemma 2.1, Gp is a nice subgroup of S(RG), then, as it
is in the article of Mollov and Nachev (2010a), we see that

dT = S(RGpα

)Gp/Gp
∼= S(RGpα

)/Gpα

p .
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Therefore,

(3.1) dT ∼= S(RGpα

)/Gpα

p .

(i) if Gpα

p 6= 1 then, as it is in the paper of Mollov and Nachev (2010), we
see that case 1) of the proposition holds.

(ii) Let Gpα

p = 1. Then (3.1) implies

dT ∼= dS(RGpα

)

and, by Theorem 2.2, we obtain cases 2) and 3) of the proposition. ¤
The following result gives a full description, up to isomorphism, of the

maximal divisible subgroup dV (RG) of V (RG).

Theorem 3.4. Let R be a direct product of m commutative perfect rings
Ri of prime characteristic p, m ∈ N and G be an abelian p-group. Suppose that
for every i = 1, 2, ..., m, G is a direct factor of V (RiG) and the pair (Ri, G)
satisfies exactly one of the conditions (*). Then there exist p-subgroups Ti of
V (RiG), i = 1, 2, ..., m, such that

(3.2) V (RG) ∼=
∐
m

G×
m∐

i=1

Ti, Ti
∼= S(RiG)/Gp.

and

(3.3) dV (RG) ∼=
∐
m

dG×
m∐

i=1

dTi.

Let α be the first ordinal with the property Gpα

= Gpα+1
. Then

dTi = S(RiG
pα

)Gp/Gp and dTi
∼= S(RiG

pα

)/Gpα

p .
Besides

(3.4) dTi
∼=

∐

λ

Z(p∞)

where
1) λ = max(|Ri|, |Gpα |), if Gpα

p 6= 1.
2) λ = max(|Ri(p)|, |Gpα |), if Gpα

p = 1, Gpα 6= 1 and Ri(p) 6= 0 and
3) λ = 0, that is dTi = 1, if Gpα

p = 1 and either Gpα

= 1 or Ri(p) = 0.
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Proof. We obtain, by Proposition 2.3, RG ∼= ∏m
i=1 RiG. Therefore

(3.5) V (RG) ∼=
m∐

i=1

V (RiG).

Since G is a direct factor of V (RiG), then

(3.6) V (RiG) = G× Ti, Ti
∼= V (RiG)/G.

Since, by (*), V (RiG) = GS(RiG), then by (3.6),

Ti
∼= V (RiG)/G = GS(RiG)/G ∼= S(RiG)/Gp,

so that Ti is a p-subgroup of V (RiG) and the second formula of (3.2) holds.
Besides (3.5) and (3.6) imply the first formula of (3.2). Then (3.2) implies
obviously (3.3). Further the proof follows from Proposition 3.3. ¤

Theorem 3.5. Let R be a direct product of m commutative perfect rings Ri

with identity of prime characteristic p without nilpotent elements, m ∈ N and G
be an abelian p-group. Suppose that for every i = 1, 2, ...,m, G is a direct factor
of V (RiG) and V (RiG)/G is a simply presented p-group. Then there exist
simply presented p-subgroups Ti of V (RiG), i = 1, 2, ..., m, Ti

∼= S(RiG)/Gp,
such that (3.2) holds. Every group Ti is described, up to isomorphism, by its
Ulm-Kaplansky invariants fα(Ti) and by its maximal divisible subgroup dTi.
The invariants fα(Ti) are the following:

(a) if Ri and Gpα

are finite, then

(3.7) fα(Ti) = (|Gpα | − 2|Gpα+1 |+ |Gpα+2 |)logp|Ri| − fα(Gp).

(b) If either |Ri| ≥ ℵ0 or |Gpα | ≥ ℵ0, then

(3.8) fα(Ti) =

{
max(|Ri|, |Gpα |), if |Gpα

p | 6= 1 and Gpα 6= Gpα+1
;

0, if either Gpα

p = 1 or Gpα

= Gpα+1
.

For the maximal divisible subgroup dTi of Ti the following assertions hold:
if α is the first ordinal such that Gpα

= Gpα+1
, then dTi

∼= S(RiG
pα

)/Gpα

p .
Besides for dTi formula (3.4) is valid where

1) λ = max(|Ri|, |Gpα |), if Gpα

p 6= 1.
2) λ = max(|Ri(p)|, |Gpα |), if Gpα

p = 1, Gpα 6= 1 and Ri(p) 6= 0 and
3) λ = 0, that is dTi = 1, if Gpα

p = 1 and either Gpα

= 1 or Ri(p) = 0.
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Proof. The proof is analogously of the proof of Theorem 3.3 of the paper
of Mollov and Nachev (2010a). Namely, we obtain, by Proposition 2.3, that
RG ∼= ∏m

i=1(RiG) and

V (RG) ∼=
m∐

i=1

V (RiG).

Since V (RiG) = G× Ti and Ti is a p-group, then, by Corollary 3.2, V (RiG) =
GS(RiG). Hence

Ti
∼= V (RiG)/G = S(RiG)G/G ∼= S(RiG)/Gp,

so that (3.2) holds. Since Ti is simply presented, then it is described, up to iso-
morphism, by fα(Ti) and dTi. In case (a) of the theorem, the invariants fα(Ti)
are given by Proposition 2.4 and in case (b) – by Theorem 2.5. Consequently,
for fα(Ti) (3.7) and (3.8) holds. Sinse Ti

∼= S(RiG)/Gp, then Proposition 3.3
implies the indicated description of dTi ¤

Remark 1. For the calculation of the Ulm-Kaplansky invariants of the
group S(FG)/Gp in the finite case, that is, in case (a) of Theorem 3.5, we use
Proposition 2.4, that is a result of Kuneva V. N., Mollov T. Zh. and Nachev
N. A. (2009) and we do not use the result of Danchev [2004a, Theorem 6, case
(i)], since the last result is inexact and it is not completed (see Kuneva V. N.,
Mollov T. Zh. and Nachev N. A. (2009)).

Remark 2. Let G and R be as in Theorem 3.5. In the paper of Mollov
T. Zh. and Nachev N. A. (2010a) the following is noted:

a) the description of d(S(RG)/Gp) in the article of of Danchev (2004b) is
not given, up to isomorphism, although the author asserts the contrary and

b) the structures of S(RG) and V (RG) in the papers of Danchev (2004a
and 2004b) are not completely determined.

Therefore, the cases a) and b) of the Remark 2 imply that our Proposition
3.3 and Theorem 3.5 are no corollaries from the results of Danchev (2004a and
2004b).
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ВЪРХУ МУЛТИПЛИКАТИВНИТЕ ГРУПИ НА
КОМУТАТИВНИ МОДУЛЯРНИ ГРУПОВИ АЛГЕБРИ

Велика Н. Кунева, Тодор Ж. Моллов

Резюме. Нека G е абелева група и R е комутативен пръстен с единица
и проста характеристика p. Да означим с RG груповата алгебра на G над R,
с V (RG)– групата от нормираните единици в RG, с Gp – p-компопнентата
на G, с tG –периодичата подгрупа на G и с R∗p – p-компопнентата на мул-
типликативната група R∗ на пръстена R. В тази работа доказваме, че ако
G е директен множител на V (RG), то V (RG)/G е p-група тогава и само то-
гава, когато двойката (R, G) удовлетворява точно едно от следните условия
(*):

1) G = Gp;
2) G 6= Gp, tG = Gp и пръстенът R е неразложим;
3) p = 3, R∗ = 〈−1〉 ×R∗3, G = A×G3, |A| = 2 и
4) p = 2, R∗ = R∗2, G = A×G2, |A| = 3 и уравнението X2 + XY + Y 2 =

1 + N(R) има само тривиалните решения във фактор-пръстена R/N(R),
където N(R) е нил-радикалът на R.

Ако R е директно произедение на m комутативни перфектни пръсте-
ни Ri и G е директен множител на V (RiG), i=1,2,...m, то даваме пълно
описание, с точност до изоморфизъм,

(i) на максималната делима подгрупа на V (RG), ако всяка двойка
(Ri, G), i=1,2,...m, удовлетворява точно едно от условията (∗) и

(ii) на V (RG), ако V (RiG)/G, i=1,2,...m, са просто представени p-групи
и пръстенът R е без нилпотентни елементи.
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