IJIOBAMBCKU YHUBEPCUTET “ITAUCHIA XUJIEHIAPCKW”, BbJITAPUS
HAYYHU TPYAOBE, TOM 37,KH. 3, 2010 -MATEMATUKA
PLOVDIV UNIVERSITY “PAISSII HILENDARSKI”, BULGARIA
SCIENTIFIC WORKS, VOL. 37, BOOK 3, 2010 - MATHEMATIS

APPROACHES AND TECHNIQUES FOR LEGACY
SOFTWARE MODERNIZATION

Anna Malinova

Abstract. This paper aims to provide an overview of the dagiproaches
to legacy software modernization. Discussed areckdtmx and white-box
modernization techniques. Modernization towardsS&A environment and its
realization through wrapping is also consideredeference to a real world use
case of modernization of legacy software in the aionof plasma physics and
simulation of metal vapour lasers is also provided.

Key words: legacy software, modernization, wrapping, modextian towards
an SOA
Mathematics Subject Classification 200068N01

1. Introduction

Existing software systems need to evolve in ordeface the evolution of
technologies and the frequently changing businegsirements. According to [17]
software systems become legacy systems when tlggy tmeresist modification and
evolution. Assuming that these systems still prexs@nificant business value, they
must be modernized or replaced.

The aim of this paper is to provide an overviewtbé& basic strategies,
activities and techniques for modernization of Bgaoftware. This research is
connected with the modernization process we havienpeed in order to reuse and
integrate legacy scientific codes in the domaiplaéma physics and simulation of
metal vapour lasers. The approaches we have usdghaed on wrapper techniques,

77

Anna Malinova

which are discussed in the following sections. @isezussion makes references to
some of the results of our work as well.

In Section two are presented the basic approachdsaling with a system that
turns out to be a legacy one. In Section threed&eussed a number of primary
legacy modernization techniques.

3. Modernization of legacy software — basic stratégs and activities

System evolution covers a broad range of developativities - from adding
a line of code to completely re-implementing thateyn. In [22] and [23] system
evolution activities are divided in three categsrimaintenance, modernization, and
replacement. According to [17]:

= Maintenance is an incremental and iterative process in whiatals
changes are made to a system. These changes anebofy fixes or
small functional enhancements that do not involvajom structural
changes.

= Modernization involves more extensive changes than maintenaunte b
conserves a significant portion of the existingtsys These changes
may include restructuring the system or enhanaimgtfonality.

= Replacementrequires rebuilding the system from scratch. Sgstean
be replaced either all in one by using the “bigdfaapproach, or
incrementally.

In this regard, Lehman’s first law [9] states tkaftware must be continually
adapted or it will become progressively less satisfry. Thus software maintenance
and modernization help to keep applications upatednd in use. Modernizations
generally refer to large-scale changes which tekxtend the software’s lifetime.

Depending on the required level of system undedéhgn modernization
strategies can be classified into two differenegaties: “black-box” modernization
and “white-box” modernization [17].

Black-box modernization requires knowledge of the external behaviour ef th
legacy system and involves examining of its inpansl outputs to understand the
system interfaces. A common black-box method isafwaing”.

Wrapping can be defined as “surrounding the legacy systétm avsoftware
layer that hides the unwanted complexity of the gfdtem and exports a modern
interface” [17]. In [5] is discussed the reengiriegrpattern “Present the right
interface”, which is aimed at wrapping a legacyteysin order to export the right
abstractions, even if they are not reflected indkisting implementation. Possible
problems, hints, pros, and cons are also considerbd proposed solution is

78

Approaches and Techniques for Legacy Software Muozation

connected with identifying the abstractions tha aeeded in the new system and
wrapping up the old software in order to emulateribw abstractions.

In [18] is discussed that wrapping can be accoretisat multiple levels
corresponding to the levels at which one can adteskgacy software application:
process level, transaction level, program leveldut® level, and procedural level.
In [19] the process level is considered the sintplesm of encapsulation, while
procedural level is regarded as “the most challegndorm of wrapping” since an
internal procedure is invoked as if it were a safgdy compiled module. In [19] it is
also stated that wrapping legacy software is ndgndbne in three steps: 1) the
wrapper should be constructed; 2) the target prograhould be adapted; 3) the
interaction between the wrapper and the targetrprogshould be tested. Here,
adaption involves performing changes to the tasgstem. In contrast, in our work
we have performed wrapping without making any cleantp the legacy code, as
presented in [6], [12] and [13].

White-box modernization is more extensive and complex than black-box
approach. It requires understanding of the leggstes internals and is also known
as “software reengineering”.

Reengineering of legacy systems is defined in [3] as “examimatiand
alteration of a subject system to reconstitutenitinew form and the subsequent
implementation of the new form”.

Although the reasons for reengineering a system vaay; the actual technical
problems are typically very similar and may includéiding monolithic systems
into separate parts for easier marketing; improvimgintenance, portability, etc.;
increasing efficiency; migration to a different titam; adoption of new
technologies.

The reengineering process includes three phasegarft engineering, reverse
engineering, and reengineering [bleverse engineering reconstructs higher-level
models and artefacts from code to achieve programdenstanding. Reverse
engineering involves such activities as re-docuat@n and design recovery [3]. In
contrastforward engineering can be understood as a process of moving form high
level abstractions and logical, implementation peledent designs, to the physical
implementation of a system [3]. In this conteséengineering is a process that
transforms one low-level representation into anoth@he actual code
transformations during reengineering are perforthedugh a number of techniques
that involve restructuring. According to [3] restturing is “the transformation from
one representation form to another at the samdivelabstraction level, while
preserving the systems external behaviour”. A féxample of restructuring is the
transformation of unstructured “spaghetti” codeatstructured oneRefactoring is
restructuring within an object-oriented contextidtdefined in [7] as “process of

79

Anna Malinova

changing a software system in such a way that @sdoot alter the external
behaviour of the code yet improves its internalittire”. This may be renaming
(fields, variables, classes), changing the physicghnization of code (e.g. moving
packages and classes), changing the logical orgi@mizof code at class level (e.g.
moving methods or fields from a class to a subctassuperclass), changing the
code within a class (e.g. turning local variablgs iclass fields), etc.

Although white-box and black-box approaches suggesipping as an
alternative strategy to reengineering and redevedoyt, quite often wrapping is
introduced as one of the techniques to carry aairdlengineering [5], [15], or it is
defined as a “black-box reengineering task” [174). [This assumes broader
understanding of the reengineering process thagrkpon the level of abstraction
at which wrapping has been performed. For instatieewrapping techniques and
practical experience presented in [6], [12] and Et®w that most often wrapping is
not entirely a “black-box” approach and requiremedevel of reverse engineering
for better understanding of the wrapped legacyrfiates, class hierarchy, or objects
interrelations. In this process a need for re-dantation and design recovery may
appear. In addition, in our work, after completioh the wrapping process, a
subsequent process of forward engineering has fredarmed over the wrappers in
order to extend the functionality of the legacyteys, add safety or new features in
wrappers by the use of the new technologies thedrbe available as a result of the
overall reengineering process.

3. Legacy modernization techniques

According to [14] one of the main difficulties obfsware evolution is that all
artefacts produced and used during the entire softvife-cycle are subject to
changes, ranging from early requirements over aismlgnd design documents, to
source code and executable code. In [14] is amedtthat this fact automatically
spawns many subdisciplines in the research donfasofoware evolution, some of
which are: requirements evolution, architecturel@ian, data evolution, runtime
evolution, Service-Oriented Architectures (SOA)y)daage evolution. Furthermore,
in [4] is discussed that legacy systems may be mmimi=d at functional (logic), data,
or user interface level. In this context, it is @us that a collection of different
modernization techniques is needed for each okthesdernization levels and areas
of software evolution. For instance: a common tépm for user interface
modernization is “screen scrapping” which providell (usually text-based)
interface with new (graphical or web) one; data eraization may be connected
with an XML integration; modernization at functidriavel may include techniques
for object-oriented wrapping or component wrapping.

80

Approaches and Techniques for Legacy Software Muozation

Among the existing number of modernization techaguseveral can be
pointed out as primary [8], [20], [21], [24]:

Automated migration — migration of languages, databases and platforms
using software tools like automated parsers andvemters. Some
examples are: migration of legacy applications dath that use legacy
databases and file systems to relational databpsegram restructuring
(dead code elimination, GOTO elimination), etc. dwaated migration
suggests that the transformation process is “dlgoic” in nature and
does not require injection of human intelligenctithe transformation
process [20].

Re-hosting— running the legacy applications on a differdatfprm. The
business logic and data of legacy applications nerimdact in the new
platform. Re-hosting is often used in combinationithw other
modernization techniques, such as automated nograti

Package implementation— replacement of legacy applications with
commercial-off-the-shelf (COTS) packages [20]. Togtion focuses on
building a portfolio with the best packages and ponents available
from third-party vendors. However, reuse of exigtiegacy business
logic is not possible with this approach [21]. Soewel of reengineering
or customization of packages and rewriting businkggc may be
involved in this process as well.

Reengineering/Re-architecturing — the most efficient modernization
technique to transform legacy applications. It veorky gathering
requirements from existing legacy applications eadkveloping them on
newer platforms using new technologies [21]. A tgbiexample is the
adoption of modern technology with new architedtyraradigms like
Service-Oriented Architecture through reengineering

SOA Integration — expose business logic and data embedded inylegac
programs as well-defined, reusable services. Asudied in [20], the
simplest way to address the legacy modernizatiaio isvrap” existing
application interfaces through SOA wrappers, thnesiting SOA services
that can be registered to an SOA management faoitita new platform,
but are implemented via the existing legacy code.

Modernization towards an SOA environmentis a major trend in legacy
software evolution. As listed above, it can be acéid through reengineering
activities, as well as trough wrapping techniguiEpending on whether the legacy
code will be changed or not. Web services-based S@ikesses many of the legacy
modernization issues, providing interoperabilitgplcation integration, reusability,
and flexibility, which are motivated mainly by theosely coupled nature of the web

81

Anna Malinova

services. Modernization towards an SOA adds to tliscussed general
modernization strategies activities, such as [2]:

- ldentifying the candidates for services — what bardefined as a service
and then choose the services with the greateshéasivalue and the least business
cost;

- Salvaging the legacy code - locate that code atermdee its worthiness
for reuse, extract it and reassemble it as a separadule with its own interface;

- Wrapping the salvaged code - the final aim of thepping process is
producing Web Services Description Language (WSDitgrface for the legacy
code;

- Linking the services into a business process.

Hence, within white-box and black-box modernizatistnategieswrapping
and componentization can be specified as basic techniques aimed aewnbi
service orientation. Wrapping provides legacy congmas with a new WSDL
interface, making them easily accessible by otludtwsre components and thus
facilitates the SOA principle of interoperabilityWrapping concentrates on the
interface of the legacy system, hiding the compjeri its internals [1] and thus
provides for flexibility. Componentization involseaestructuring in order to group
together functionality and data into componentds fnovides for fulfiiment of the
SOA principles of loose coupling and reusability.

In [10], [11] and [12] is presented a modernizatiowards an SOA in order to
perform numerical simulation of metal vapour las@isis work is connected with
creating Java wrappers of existing legacy physifsvare. These codes are modules
written in the C, C++ and FORTRAN languages. Nesame of the wrapped
modules were converted into web services and otelied by a Business Process
Execution Language (BPEL) process of simulation.

The modernization process presented in [6] and [§3jonnected with the
creation of the WebPlasimo prototype which providew interfaces to the Plasimo
framework for modelling low-temperature plasma sesr[16]. The aim of this
work was: 1) to create a web interface to the Rlasframework; 2) to expose
certain Plasimo functionalities as web servicesuse by other scientific groups.
Both tasks involve the creation of Java wrapperbasic Plasimo functionality. In
our work wrapping was chosen as a preferred mozkaion strategy because this is
the only approach that does not entail performimdecchanges to the legacy system
and because this technique allows for reusing fmra side, and application of
modern technologies from the other.

82

Approaches and Techniques for Legacy Software Muozation

4. Conclusions

Legacy applications are increasingly becoming ablera for all kinds of

companies and organizations. Modernizing approaemes techniques allow for
lowering the cost and complexity of legacy systemms.this process it is very
important to choose the appropriate strategy atugit the defined levels of usage
of existing application assets and movement toweaitter technology environments.

5. Acknowledgements

This work was partially supported by the RS-20093Mfproject of the

Scientific Fund of the University of Plovdiv “Pdislilendarski”, Bulgaria.

References

[1] Almonaies, A., J. Cordy , T. Dean, Legacy t8ys Evolution Towards Service-

(2]

(3]

(4]

(5]
(6]

[7]
(8]

Oriented Architecture, Proc. SOAME 2010, Int. Wdr on SOA Migration
and Evolution, Madrid, Spain, March 2010, pp. 53-62

Bhattacharya, S., Integrate legacy systeme ydur SOA initiative, 2007,
http://www.ibm.com/developerworks/webservices/lityfars-soa-
legacyapps/index.html.

Chikofsky, E., J. Cross Il, Reverse enginegriand design recovery: A
taxonomy, Software Reengineering, IEEE ComputeriebpcPress, 1992,
p.54-58.

Comella-Dorda, S., K. Wallnau, R. SeacordRdbert, A Survey of Black-Box
Modernization Approaches for Information System®cPof the Int. Conf. on
Software Maintenance, 2000, ICSM. IEEE Computesi€y, Washington, p.
173.

Demeyer, S., S. Ducasse, O. Nierstrasz, Olfpeeinted Reengineering
Patterns, Square Bracket Associates, Switzerlad@b.2

Dijk, J. van, A. Malinova, V. Yordanov, Mulled.J.A.M. van der, New
Interfaces for the Plasimo Framework, 6th Int. Camf Atomic and Molecular
Data and Their Applications, Beijing, China, 27 + ®ct. 2008, AIP Conf.
Proc., Vol. 1125, 2009, pp. 176-187.

Fowler, M., K. Beck, J. Brant, W. Opdyke, Roberts, Refactoring: Improving
the Design of Existing Code, AddisonWesley, 1999.

Laszewski, T., J. Willlamson, Oracle Moderriipa Solutions, Packt
Publishing, 2008.

83

Anna Malinova

[9] Lehman, M. M., Ramil, J. F., Wernick, P. D.er®, D. E., Turski, W. M,
Metrics and Laws of Software Evolution - The NiestView, Proc. of the 4th
Int. Symp. on Software Metrics, METRICS'97, IEEE rGouter Society,
Washington, 1997, p. 20.

[10] Malinova, A. A., S. G. Gocheva-llieva, Applitan of the Business Process
Execution Language for building scientific proces$er simulation of metal
vapor lasers, Proc. of the 3rd Balkan Conf. in infatics, Sofia, Bulgaria, 27-
29 Sept., 2007, Volume 2, pp.75-86.

[11] Malinova, A. A., S. G. Gocheva-llieva, I. Rliev, Web services — based
simulation of metal vapor lasers, Proc. of the iX. IConf. on Laser & Laser
Inf. Techn. & V Int. Symp. on Laser Techn. & Lasdtd A/LTL '2006,
Smolyan, Bulgaria, October 4-7, 2006, pp. 315-321.

[12] Malinova, A. A., S. G. Gocheva-llieva, I. Piev, Wrapping legacy codes for
Numerical simulation applications, Proc. of the liiternational Bulgarian-
Turkish Conf. Computer science, Istanbul, Turkegtaber 12-15, 2006, Part
I, pp. 202-207, 2007.

[13] Malinova, A., V. Yordanov, J. van Dijk, Leveagimg existing plasma simulation
codes, International Book Series "Information Scee & Computing”,
Number 5, pp.136-142, Suppl. to the Int. J. "Infation Technologies &
Knowledge", Vol. 2/2008.

[14] Mens, T., S. Demeyer, Software Evolution, 8ger, 2008.

[15] Norton, D., V. Decyk, Re-engineering legacyssibn scientific software, Space
2001 Conference and Exposition Albuquerque, NewittexUSA, 2001.

[16] Plasimo simulation software, http://plasimoyphue.nl

[17] Seacord, R., D. Plakosh, G. Lewis, Modernizicggacy Systems: Software
Technologies, Engineering Processes, and Busineastides, Addison-
Wesley, 2003.

[18] Sneed, H., Encapsulating Legacy Software feuse in Client/Server Systems,
Proc. of WCRE-96, IEEE Press, Monterey, 1996.

[19] Sneed, H., Encapsulation of legacy softwareteghnique for reusing legacy
software components, Ann. Softw. Eng, 9, 1-4 J8002pp. 293-313.

[20] Venema, T., The Oracle IT Modernization SeriBlse Types of Modernization,
An Oracle White Paper, http://www.oracle.com/tedbg@s/modernization/
docs/typesofmodernization.pdf, 2008.

[21] Venkatraghavan, N., Legacy Modernization: Maize and Scale, InfoSys
White Paper, http://www.infosys.com/microsoft/resm4
center/Documents/legacy-modern.pdf, 2008.

84

Approaches and Techniques for Legacy Software Muozation

[22] Weiderman, N., J. Bergey, D. Smith, Tilley,08cR., Approaches to Legacy
System Evolution (CMU/SEI-97-TR-014), Pittsburgh,a.:P Software
Engineering Institute, Carnegie Mellon Universitp97.

[23] Weiderman, N., L. Northrop, D. Smith, S. Tille K. Wallnau, Implications of
Distributed Object Technology for Reengineering (@MEI-97-TR-005
ADA326945). Pittsburgh, Pa.: Software Engineeringstitute, Carnegie
Mellon University, 1997.

[24] Zou, Y., K. Kontogiannis, Re-engineering LegaBystems to Web-enabled
Environments, In book "Managing Corporate InformatiSystems Evolution
and Maintenance”, ldea Group Publishing, Hershey, BSA, pp. 138-146,
2004.

Faculty of Mathematics and Informatics Received 18 September 2010
University of Plovdiv

236 Bulgaria Blvd.,

4003 Plovdiv, Bulgaria

e-mail:mal i nova@ini - pl ovdi v. bg

noaxoan U TEXHUKU 3A MOIAEPHU3UPAHE HA
HACJIEJEH CO®TYEP

Anna MajauHoBa

Pe3rome. Llenra Ha cTaTHATa € Ja ce HampaBu 0030p Ha OCHOBHHUTE MOAXOIH 38
MOJEpHH3UpaHe Ha HacimeneH codryep. JMCKyTHpaHH ca TEXHHKH, H3WCKBAIH
[O3HAHUS 32 BBTPCLIHATA APXUTEKTypa M HMIUICMCHTALUs Ha HACICACHUS KOJX
(white-box modernizationkakto u TeXxHUKH, POKYCHpaHH BEPXY (QYHKIHOHATHHUTE
u3ncKBaHus U uHTepdeiica Ha cuctemara (black-box modernization)Pasrienana e
¥ MOJCpHH3ALMsITa HA HACICICH COPTyep B IOCOKA HAa apXUTEKTypa, OPUCHTHPaHA
KbM m3noNM3BaHeTo Ha yciyru (Service-Oriented Architecture, SOA) HeiiHOTO
peamusupaHe 4pe3 oOBHBaHEe. B TekcTa ce MpaBsT NpenpaTKd KbM OCHOBHH
pe3ynTaTH OT MOJACPHHU3MPAHETO Ha HAcleAeHHW (U3MYHM KOJOBE B obnacTra Ha
¢u3uKaTa Ha IUIa3MaTa ¥ CUMYJIAlUsITa Ha JIa3epH C METAJHHU MapH.

85

