
77

ПЛОВДИВСКИ УНИВЕРСИТЕТ “ПАИСИЙ ХИЛЕНДАРСКИ”, БЪЛГАРИЯ
НАУЧНИ ТРУДОВЕ, ТОМ 37, КН. 3, 2010 – МАТЕМАТИКА

PLOVDIV UNIVERSITY “PAISSII HILENDARSKI”, BULGARIA
SCIENTIFIC WORKS, VOL. 37, BOOK 3, 2010 – MATHEMATICS

APPROACHES AND TECHNIQUES FOR LEGACY
SOFTWARE MODERNIZATION

Anna Malinova

Abstract. This paper aims to provide an overview of the basic approaches

to legacy software modernization. Discussed are black-box and white-box
modernization techniques. Modernization towards an SOA environment and its
realization through wrapping is also considered. A reference to a real world use
case of modernization of legacy software in the domain of plasma physics and
simulation of metal vapour lasers is also provided.

Key words: legacy software, modernization, wrapping, modernization towards
an SOA

Mathematics Subject Classification 2000: 68N01

1. Introduction

Existing software systems need to evolve in order to face the evolution of

technologies and the frequently changing business requirements. According to [17]
software systems become legacy systems when they begin to resist modification and
evolution. Assuming that these systems still provide significant business value, they
must be modernized or replaced.

The aim of this paper is to provide an overview of the basic strategies,
activities and techniques for modernization of legacy software. This research is
connected with the modernization process we have performed in order to reuse and
integrate legacy scientific codes in the domain of plasma physics and simulation of
metal vapour lasers. The approaches we have used are based on wrapper techniques,

Anna Malinova

78

which are discussed in the following sections. The discussion makes references to
some of the results of our work as well.

In Section two are presented the basic approaches to dealing with a system that
turns out to be a legacy one. In Section three are discussed a number of primary
legacy modernization techniques.

3. Modernization of legacy software – basic strategies and activities

System evolution covers a broad range of development activities - from adding
a line of code to completely re-implementing the system. In [22] and [23] system
evolution activities are divided in three categories: maintenance, modernization, and
replacement. According to [17]:

� Maintenance is an incremental and iterative process in which small
changes are made to a system. These changes are often bug fixes or
small functional enhancements that do not involve major structural
changes.

� Modernization involves more extensive changes than maintenance but
conserves a significant portion of the existing system. These changes
may include restructuring the system or enhancing functionality.

� Replacement requires rebuilding the system from scratch. Systems can
be replaced either all in one by using the “big-bang” approach, or
incrementally.

In this regard, Lehman’s first law [9] states that software must be continually
adapted or it will become progressively less satisfactory. Thus software maintenance
and modernization help to keep applications up-to-date and in use. Modernizations
generally refer to large-scale changes which help to extend the software’s lifetime.

Depending on the required level of system understanding, modernization
strategies can be classified into two different categories: “black-box” modernization
and “white-box” modernization [17].

Black-box modernization requires knowledge of the external behaviour of the
legacy system and involves examining of its inputs and outputs to understand the
system interfaces. A common black-box method is “wrapping”.

Wrapping can be defined as “surrounding the legacy system with a software
layer that hides the unwanted complexity of the old system and exports a modern
interface” [17]. In [5] is discussed the reengineering pattern “Present the right
interface”, which is aimed at wrapping a legacy system in order to export the right
abstractions, even if they are not reflected in the existing implementation. Possible
problems, hints, pros, and cons are also considered. The proposed solution is

Approaches and Techniques for Legacy Software Modernization

79

connected with identifying the abstractions that are needed in the new system and
wrapping up the old software in order to emulate the new abstractions.

In [18] is discussed that wrapping can be accomplished at multiple levels
corresponding to the levels at which one can access the legacy software application:
process level, transaction level, program level, module level, and procedural level.
In [19] the process level is considered the simplest form of encapsulation, while
procedural level is regarded as “the most challenging form of wrapping” since an
internal procedure is invoked as if it were a separately compiled module. In [19] it is
also stated that wrapping legacy software is normally done in three steps: 1) the
wrapper should be constructed; 2) the target programs should be adapted; 3) the
interaction between the wrapper and the target program should be tested. Here,
adaption involves performing changes to the target system. In contrast, in our work
we have performed wrapping without making any changes to the legacy code, as
presented in [6], [12] and [13].

White-box modernization is more extensive and complex than black-box
approach. It requires understanding of the legacy system internals and is also known
as “software reengineering”.

Reengineering of legacy systems is defined in [3] as “examination and
alteration of a subject system to reconstitute it in a new form and the subsequent
implementation of the new form”.

Although the reasons for reengineering a system may vary, the actual technical
problems are typically very similar and may include: dividing monolithic systems
into separate parts for easier marketing; improving maintenance, portability, etc.;
increasing efficiency; migration to a different platform; adoption of new
technologies.

The reengineering process includes three phases: forward engineering, reverse
engineering, and reengineering [5]. Reverse engineering reconstructs higher-level
models and artefacts from code to achieve program understanding. Reverse
engineering involves such activities as re-documentation and design recovery [3]. In
contrast, forward engineering can be understood as a process of moving form high-
level abstractions and logical, implementation independent designs, to the physical
implementation of a system [3]. In this context, reengineering is a process that
transforms one low-level representation into another. The actual code
transformations during reengineering are performed through a number of techniques
that involve restructuring. According to [3] restructuring is “the transformation from
one representation form to another at the same relative abstraction level, while
preserving the systems external behaviour”. A typical example of restructuring is the
transformation of unstructured “spaghetti” code to a structured one. Refactoring is
restructuring within an object-oriented context. It is defined in [7] as “process of

Anna Malinova

80

changing a software system in such a way that it does not alter the external
behaviour of the code yet improves its internal structure”. This may be renaming
(fields, variables, classes), changing the physical organization of code (e.g. moving
packages and classes), changing the logical organization of code at class level (e.g.
moving methods or fields from a class to a subclass or superclass), changing the
code within a class (e.g. turning local variables into class fields), etc.

Although white-box and black-box approaches suggest wrapping as an
alternative strategy to reengineering and redevelopment, quite often wrapping is
introduced as one of the techniques to carry out the reengineering [5], [15], or it is
defined as a “black-box reengineering task” [17], [4]. This assumes broader
understanding of the reengineering process that depends on the level of abstraction
at which wrapping has been performed. For instance, the wrapping techniques and
practical experience presented in [6], [12] and [13] show that most often wrapping is
not entirely a “black-box” approach and requires some level of reverse engineering
for better understanding of the wrapped legacy interfaces, class hierarchy, or objects
interrelations. In this process a need for re-documentation and design recovery may
appear. In addition, in our work, after completion of the wrapping process, a
subsequent process of forward engineering has been performed over the wrappers in
order to extend the functionality of the legacy system, add safety or new features in
wrappers by the use of the new technologies that became available as a result of the
overall reengineering process.

3. Legacy modernization techniques

According to [14] one of the main difficulties of software evolution is that all
artefacts produced and used during the entire software life-cycle are subject to
changes, ranging from early requirements over analysis and design documents, to
source code and executable code. In [14] is also stated that this fact automatically
spawns many subdisciplines in the research domain of software evolution, some of
which are: requirements evolution, architecture evolution, data evolution, runtime
evolution, Service-Oriented Architectures (SOA), language evolution. Furthermore,
in [4] is discussed that legacy systems may be modernized at functional (logic), data,
or user interface level. In this context, it is obvious that a collection of different
modernization techniques is needed for each of these modernization levels and areas
of software evolution. For instance: a common technique for user interface
modernization is “screen scrapping” which provides old (usually text-based)
interface with new (graphical or web) one; data modernization may be connected
with an XML integration; modernization at functional level may include techniques
for object-oriented wrapping or component wrapping.

Approaches and Techniques for Legacy Software Modernization

81

Among the existing number of modernization techniques, several can be
pointed out as primary [8], [20], [21], [24]:

� Automated migration – migration of languages, databases and platforms
using software tools like automated parsers and converters. Some
examples are: migration of legacy applications and data that use legacy
databases and file systems to relational databases, program restructuring
(dead code elimination, GOTO elimination), etc. Automated migration
suggests that the transformation process is “algorithmic” in nature and
does not require injection of human intelligence into the transformation
process [20].

� Re-hosting – running the legacy applications on a different platform. The
business logic and data of legacy applications remain intact in the new
platform. Re-hosting is often used in combination with other
modernization techniques, such as automated migration.

� Package implementation – replacement of legacy applications with
commercial-off-the-shelf (COTS) packages [20]. This option focuses on
building a portfolio with the best packages and components available
from third-party vendors. However, reuse of existing legacy business
logic is not possible with this approach [21]. Some level of reengineering
or customization of packages and rewriting business logic may be
involved in this process as well.

� Reengineering/Re-architecturing – the most efficient modernization
technique to transform legacy applications. It works by gathering
requirements from existing legacy applications and redeveloping them on
newer platforms using new technologies [21]. A typical example is the
adoption of modern technology with new architectural paradigms like
Service-Oriented Architecture through reengineering.

� SOA Integration – expose business logic and data embedded in legacy
programs as well-defined, reusable services. As discussed in [20], the
simplest way to address the legacy modernization is to “wrap” existing
application interfaces through SOA wrappers, thus creating SOA services
that can be registered to an SOA management facility on a new platform,
but are implemented via the existing legacy code.

Modernization towards an SOA environment is a major trend in legacy
software evolution. As listed above, it can be achieved through reengineering
activities, as well as trough wrapping techniques, depending on whether the legacy
code will be changed or not. Web services-based SOA addresses many of the legacy
modernization issues, providing interoperability, application integration, reusability,
and flexibility, which are motivated mainly by the loosely coupled nature of the web

Anna Malinova

82

services. Modernization towards an SOA adds to the discussed general
modernization strategies activities, such as [2]:

- Identifying the candidates for services – what can be defined as a service
and then choose the services with the greatest business value and the least business
cost;

- Salvaging the legacy code - locate that code and determine its worthiness
for reuse, extract it and reassemble it as a separate module with its own interface;

- Wrapping the salvaged code - the final aim of the wrapping process is
producing Web Services Description Language (WSDL) interface for the legacy
code;

- Linking the services into a business process.
Hence, within white-box and black-box modernization strategies, wrapping

and componentization can be specified as basic techniques aimed at achieving
service orientation. Wrapping provides legacy components with a new WSDL
interface, making them easily accessible by other software components and thus
facilitates the SOA principle of interoperability. Wrapping concentrates on the
interface of the legacy system, hiding the complexity of its internals [1] and thus
provides for flexibility. Componentization involves restructuring in order to group
together functionality and data into components. This provides for fulfilment of the
SOA principles of loose coupling and reusability.

In [10], [11] and [12] is presented a modernization towards an SOA in order to
perform numerical simulation of metal vapour lasers. This work is connected with
creating Java wrappers of existing legacy physics software. These codes are modules
written in the C, C++ and FORTRAN languages. Next, some of the wrapped
modules were converted into web services and orchestrated by a Business Process
Execution Language (BPEL) process of simulation.

The modernization process presented in [6] and [13] is connected with the
creation of the WebPlasimo prototype which provides new interfaces to the Plasimo
framework for modelling low-temperature plasma sources [16]. The aim of this
work was: 1) to create a web interface to the Plasimo framework; 2) to expose
certain Plasimo functionalities as web services for use by other scientific groups.
Both tasks involve the creation of Java wrappers of basic Plasimo functionality. In
our work wrapping was chosen as a preferred modernization strategy because this is
the only approach that does not entail performing code changes to the legacy system
and because this technique allows for reusing from one side, and application of
modern technologies from the other.

Approaches and Techniques for Legacy Software Modernization

83

4. Conclusions

Legacy applications are increasingly becoming a problem for all kinds of
companies and organizations. Modernizing approaches and techniques allow for
lowering the cost and complexity of legacy systems. In this process it is very
important to choose the appropriate strategy according to the defined levels of usage
of existing application assets and movement toward better technology environments.

5. Acknowledgements

This work was partially supported by the RS-2009-M13 project of the
Scientific Fund of the University of Plovdiv “Paisii Hilendarski”, Bulgaria.

References

[1] Almonaies, A., J. Cordy , T. Dean, Legacy System Evolution Towards Service-
Oriented Architecture, Proc. SOAME 2010, Int. Workshop on SOA Migration
and Evolution, Madrid, Spain, March 2010, pp. 53-62.

[2] Bhattacharya, S., Integrate legacy systems into your SOA initiative, 2007,
http://www.ibm.com/developerworks/webservices/library/ws-soa-
legacyapps/index.html.

[3] Chikofsky, E., J. Cross II, Reverse engineering and design recovery: A
taxonomy, Software Reengineering, IEEE Computer Society Press, 1992,
p.54–58.

[4] Comella-Dorda, S., K. Wallnau, R. Seacord, J. Robert, A Survey of Black-Box
Modernization Approaches for Information Systems, Proc. of the Int. Conf. on
Software Maintenance, 2000, ICSM. IEEE Computer Society, Washington, p.
173.

[5] Demeyer, S., S. Ducasse, O. Nierstrasz, Object-Oriented Reengineering
Patterns, Square Bracket Associates, Switzerland, 2009.

[6] Dijk, J. van, A. Malinova, V. Yordanov, Mullen J.J.A.M. van der, New
Interfaces for the Plasimo Framework, 6th Int. Conf. on Atomic and Molecular
Data and Their Applications, Beijing, China, 27 - 31 Oct. 2008, AIP Conf.
Proc., Vol. 1125, 2009, pp. 176-187.

[7] Fowler, M., K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving
the Design of Existing Code, AddisonWesley, 1999.

[8] Laszewski, T., J. Williamson, Oracle Modernization Solutions, Packt
Publishing, 2008.

Anna Malinova

84

[9] Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., Turski, W. M,
Metrics and Laws of Software Evolution - The Nineties View, Proc. of the 4th
Int. Symp. on Software Metrics, METRICS’97, IEEE Computer Society,
Washington, 1997, p. 20.

[10] Malinova, A. A., S. G. Gocheva-Ilieva, Application of the Business Process
Execution Language for building scientific processes for simulation of metal
vapor lasers, Proc. of the 3rd Balkan Conf. in Informatics, Sofia, Bulgaria, 27-
29 Sept., 2007, Volume 2, pp.75-86.

[11] Malinova, A. A., S. G. Gocheva-Ilieva, I. P., Iliev, Web services – based
simulation of metal vapor lasers, Proc. of the IX Int. Conf. on Laser & Laser
Inf. Techn. & V Int. Symp. on Laser Techn. & Lasers ILLA/LTL '2006,
Smolyan, Bulgaria, October 4-7, 2006, pp. 315-321.

[12] Malinova, A. A., S. G. Gocheva-Ilieva, I. P., Iliev, Wrapping legacy codes for
Numerical simulation applications, Proc. of the III International Bulgarian-
Turkish Conf. Computer science, Istanbul, Turkey, October 12-15, 2006, Part
II, pp. 202-207, 2007.

[13] Malinova, A., V. Yordanov, J. van Dijk, Leveraging existing plasma simulation
codes, International Book Series "Information Science & Computing",
Number 5, pp.136-142, Suppl. to the Int. J. "Information Technologies &
Knowledge", Vol. 2/2008.

[14] Mens, T., S. Demeyer, Software Evolution, Springer, 2008.

[15] Norton, D., V. Decyk, Re-engineering legacy mission scientific software, Space
2001 Conference and Exposition Albuquerque, New Mexico, USA, 2001.

[16] Plasimo simulation software, http://plasimo.phys.tue.nl

[17] Seacord, R., D. Plakosh, G. Lewis, Modernizing Legacy Systems: Software
Technologies, Engineering Processes, and Business Practices, Addison-
Wesley, 2003.

[18] Sneed, H., Encapsulating Legacy Software for Reuse in Client/Server Systems,
Proc. of WCRE-96, IEEE Press, Monterey, 1996.

[19] Sneed, H., Encapsulation of legacy software: A technique for reusing legacy
software components, Ann. Softw. Eng, 9, 1-4 Jan. 2000, pp. 293-313.

[20] Venema, T., The Oracle IT Modernization Series: The Types of Modernization,
An Oracle White Paper, http://www.oracle.com/technologies/modernization/
docs/typesofmodernization.pdf, 2008.

[21] Venkatraghavan, N., Legacy Modernization: Modernize and Scale, InfoSys
White Paper, http://www.infosys.com/microsoft/resource-
center/Documents/legacy-modern.pdf, 2008.

Approaches and Techniques for Legacy Software Modernization

85

[22] Weiderman, N., J. Bergey, D. Smith, Tilley, Scott R., Approaches to Legacy
System Evolution (CMU/SEI-97-TR-014), Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1997.

[23] Weiderman, N., L. Northrop, D. Smith, S. Tilley, K. Wallnau, Implications of
Distributed Object Technology for Reengineering (CMU/SEI-97-TR-005
ADA326945). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, 1997.

[24] Zou, Y., K. Kontogiannis, Re-engineering Legacy Systems to Web-enabled
Environments, In book "Managing Corporate Information Systems Evolution
and Maintenance”, Idea Group Publishing, Hershey, PA, USA, pp. 138-146,
2004.

Faculty of Mathematics and Informatics Received 18 September 2010
University of Plovdiv
236 Bulgaria Blvd.,
4003 Plovdiv, Bulgaria
e-mail: malinova@uni-plovdiv.bg

ПОДХОДИ И ТЕХНИКИ ЗА МОДЕРНИЗИРАНЕ НА

НАСЛЕДЕН СОФТУЕР

Анна Малинова

Резюме. Целта на статията е да се направи обзор на основните подходи за

модернизиране на наследен софтуер. Дискутирани са техники, изискващи
познания за вътрешната архитектура и имплементация на наследения код
(white-box modernization), както и техники, фокусирани върху функционалните
изисквания и интерфейса на системата (black-box modernization). Разгледана е
и модернизацията на наследен софтуер в посока на архитектура, ориентирана
към използването на услуги (Service-Oriented Architecture, SOA) и нейното
реализиране чрез обвиване. В текста се правят препратки към основни
резултати от модернизирането на наследени физични кодове в областта на
физиката на плазмата и симулацията на лазери с метални пари.

