ПЛОВДИВСКИ УНИВЕРСИТЕТ "ПАИСИЙ ХИЛЕНДАРСКИ", БЪЛГАРИЯ НАУЧНИ ТРУДОВЕ, ТОМ 37, КН. 3, 2010 – МАТЕМАТИКА PLOVDIV UNIVERSITY "PAISSII HILENDARSKI", BULGARIA SCIENTIFIC WORKS, VOL. 37, BOOK 3, 2010 – MATHEMATICS

ON ANOTHER PROOF OF THE SCHUR PROPERTY IN MUSIELAK-ORLICZ SEQUENCE SPACES¹

B. Zlatanov

Abstract. We show that if the dual of a Musielak–Orlicz sequence space ℓ_{Φ} is stabilized asymptotic ℓ_{∞} space with respect to the unit vector basis then ℓ_{Φ} has the Schur property.

Key words: Musielak–Orlicz Sequence Spaces **2000 Mathematics Subject Classification:** 46B20, 46B45, 46E30, 46A45

1. Introduction

A Banach space X is said to have Schur property if every weakly null sequence is norm null. It is well known that ℓ_1 has Schur property and it's dual ℓ_{∞} is stabalized asymptotic ℓ_{∞} space with respect to the unit vector basis. The only ℓ_p space that has Schur property is ℓ_1 and thus if there is isomorphic copy of ℓ_p , p>1 in X then X has not Schur property. If $\{X_{\alpha}\}_{\alpha\in I}$, I an index set, X_{α} are Banach spaces and and $X=(\oplus_{\alpha\in I}X_{\alpha})_1$ is their ℓ_1 -sum, then the space X has Schur property iff each factor X_{α} has it [10]. A Mushielak-Orlicz sequence space has Schur property, provided its dual is stabalized asymptotic ℓ_{∞} space with respect to the unit vector basis [12]. The proof is based on a result of Kaminska and Masylo [4]. It turns out that there is a direct proof using the ideas going back to the time of Banach.

 $^{^1\}mathrm{Research}$ is partially supported by National Fund for Scientific Research of the Bulgarian Ministry of Education and Science, Contract MM-1401/04.

2. Preliminaries

A standard Banach space terminology can be found in [5].

Let us recall that an Orlicz function M is even, continuous, nondecreasing, convex function defined for $t \geq 0$ such that M(0) = 0 and $\lim_{t \to \infty} M(t) = \infty$. We say that M is non–degenerate Orlicz function if M(t) > 0 for every t > 0. A sequence $\Phi = \{\Phi_i\}_{i=1}^{\infty}$ of Orlicz functions is called a Musielak–Orlicz function.

The Musielak–Orlicz sequence space ℓ_{Φ} , generated by a Musielak–Orlicz function Φ is the set of all real sequences $\{x_i\}_{i=1}^{\infty}$ such that $\sum_{i=1}^{\infty} \Phi_i(\lambda x_i) < \infty$ for some $\lambda > 0$. The Luxemburg's norm is defined by

$$||x||_{\Phi} = \inf \left\{ r > 0 : \sum_{i=1}^{\infty} \Phi_i(x_i/r) \le 1 \right\}.$$

We denote by h_{Φ} the closed linear subspace of ℓ_{Φ} , generated by all $x \in \ell_{\Phi}$, such that $\sum_{i=1}^{\infty} \Phi_i(\lambda x_i) < \infty$ for every $\lambda > 0$.

If the Musielak–Orlicz function Φ consists of one and the same function M, then we obtain the Orlicz sequence spaces ℓ_M and h_M .

Let $1 \leq p_i$, $i \in \mathbb{N}$ be a sequence of reals. The Musielak–Orlicz sequence space ℓ_{Φ} , where $\Phi = \{t^{p_i}\}_{i=1}^{\infty}$ is called Nakano sequence space and is denoted by $\ell_{\{p_i\}}$.

An extensive study of Orlicz and Musielak–Orlicz spaces can be found in [5], [9].

Definition 2.1. We say that a Musielak–Orlicz function Φ satisfies δ_2 condition at zero if there exist $K, \beta > 0$ and a non–negative sequence $\{c_n\}_{n=1}^{\infty} \in \ell_1$ such that

$$\Phi_n(2t) \le K\Phi_n(t) + c_n$$

for every $t \geq \mathbb{R}$ and $n \in \mathbb{N}$ if $\Phi_n(t) \leq \beta$.

The spaces ℓ_{Φ} and h_{Φ} coincide iff Φ has δ_2 condition at zero.

Recall that given Musielak–Orlicz functions Φ and Ψ the spaces ℓ_{Φ} and ℓ_{Ψ} coincide with equivalence of norms iff Φ is equivalent to Ψ that is for some constants $K, \beta > 0$ and a non–negative sequence $\{c_n\}_{n=1}^{\infty} \in \ell_1$ it holds

$$\Phi_n(Kt) \le \Psi_n(t) + c_n$$
 and $\Psi_n(Kt) \le \Phi_n(t) + c_n$

for every $t \geq \mathbb{R}$ and $n \in \mathbb{N}$ such that the first inequality is satisfied if $\Psi_n(t) \leq \beta$ and the second one holds if $\Phi_n(t) \leq \beta$ (e.g. [3]).

Throughout this paper Φ will always denote a Musielak–Orlicz function. As the Schur property is preserved by isomorphisms without loss of generality

we may assume that Φ consists entirely of non-degenerate Orlicz functions, such that for every $i \in \mathbb{N}$ the Orlicz function Φ_i is differentiable, $\Phi'_i(0) = 0$ and $\Phi_i(1) = 1$ [12].

Definition 2.2. For a Musielak–Orlicz function $\Phi = \{\Phi_j\}_{j=1}^{\infty}$, such that $\lim_{t\to 0} \Phi_j(t)/t = 0$ for every $j \in \mathbb{N}$ define

$$\Psi_i(x) = \sup\{t|x| - \Phi_i(t) : t \ge 0\}$$

and $\Psi = {\{\Psi_j\}_{j=1}^{\infty}}$ is called function complementary to Φ .

Let us note that the condition $\lim_{t\to 0} \Phi_j(t)/t = 0$ for every $j\in \mathbb{N}$ secures that the complementary function G_j is always non-degenerate. Observe that if the Musielak–Orlicz function Ψ is complementary to the Musielak–Orlicz function Φ , then Φ is function complementary to Ψ .

Throughout this paper the function complementary to the Musielak–Orlicz function Φ is denoted by $\Psi.$

It is well known that $h_{\Phi}^* \cong \ell_{\Psi}$. Well known equivalent norm in ℓ_{Φ} is the Orlicz norm $\|x\|_{\Phi}^O = \sup \left\{ \sum_{j=1}^{\infty} x_j y_j : \sum_{j=1}^{\infty} \Psi_j(y_j) \leq 1 \right\}$, which satisfies the inequalities (see e.g.[2])

$$\|\cdot\|_{\Phi} \leq \|\cdot\|_{\Phi}^{O} \leq 2\|\cdot\|_{\Phi}$$
.

We will use the Hölder's inequality: $\sum_{j=1}^{\infty}|x_jy_j|\leq \|x\|_{\Phi}^O\|y\|_{\Psi}$, which holds for every $x=\{x_j\}_{j=1}^{\infty}\in\ell_{\Phi}$ and $y=\{y_j\}_{j=1}^{\infty}\in\ell_{\Psi}$, where Φ and Ψ are complementary Musielak–Orlicz functions.

By $\{e_j\}_{j=1}^{\infty}$ and $\{e_j^*\}_{j=1}^{\infty}$ we denote the unit vector basis in h_{Φ} and h_{Ψ} respectively. For a Banach space X with a basis $\{v_i\}_{i=1}^{\infty}$ and an element $x \in X$, $x = \sum_{i=1}^{\infty} x_i v_i$ we define supp $x = \{i \in \mathbb{N} : x_i \neq 0\}$. We write $n \leq x$ if $n \leq \min\{\sup x\}$ and x < y if $\max\{\sup x\} < \min\{\sup y\}$. We say that x is a block vector with respect to the basis $\{v_i\}_{i=1}^{\infty}$ if $x = \sum_{i=p}^{q} x_i v_i$ for some finite p and q and we say that x is a normalized block vector if it is a block vector and ||x|| = 1.

The notion of stabilized asymptotic ℓ_p spaces first appeared in [8] under the name of asymptotic ℓ_p spaces.

Definition 2.3. A Banach space X is said to be stabilized asymptotic ℓ_{∞} with respect to a basis $\{v_i\}_{i=1}^{\infty}$, if there exists a constant $C \geq 1$, such that for every $n \in \mathbb{N}$ there exists $N \in \mathbb{N}$, so that whenever $N \leq x_1 < \cdots < x_n$ are successive normalized block vectors, then $\{x_i\}_{i=1}^n$ are C-equivalent to the unit vector basis of ℓ_{∞}^n , i.e.

$$\frac{1}{C} \max_{1 \le i \le n} |a_i| \le \left\| \sum_{i=1}^n a_i x_i \right\| \le C \max_{1 \le i \le n} |a_i|.$$

The following characterization of the stabilized asymptotic ℓ_{∞} Musielak–Orlicz sequence spaces is due to Dew:

Proposition 2.1. (Proposition 4.5.1 [1]) Let $\Phi = \{\Phi_j\}_{j=1}^{\infty}$ be a Musielak–Orlicz function. Then the following are equivalent:

- (i) h_{Φ} is stabilized asymptotic ℓ_{∞} (with respect to its natural basis $\{e_j\}_{j=1}^{\infty}$);
- (ii) there exists $\lambda > 1$ such that for all $n \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that whenever $N \leq p \leq q$ and $\sum_{j=p}^{q} \Phi_j(a_j) \leq 1$, then

$$\sum_{j=p}^{q} \Phi_j(a_j/\lambda) \le \frac{1}{n}.$$

3. Schur Property in Musielak-Orlicz Sequence Spaces

Theorem 1. Let Φ be a Musielak–Orlicz function, which has δ_2 condition at zero and has a complementary function Ψ . Let h_{Ψ} is sabilized asymptotic ℓ_{∞} with respect to the unit vector basis $\{e_j^*\}_{j=1}^{\infty}$ then ℓ_{Φ} has Schur property.

Proof. Let h_{Ψ} is stabilized asymptotic ℓ_{∞} with respect to the unit vector basis $\{e_j^*\}_{j=1}^{\infty}$ but ℓ_{Φ} fail Schur property i.e. there exists a sequence $\{x^{(n)}\}_{n=1}^{\infty}$ which is weakly null in ℓ_{Φ} and such that $\|x^{(n)}\| \geq \varepsilon$ for some $\varepsilon > 0$ and every $n \in \mathbb{N}$. Thus by the equivalence of the norms $\|\cdot\|_{\Phi}$ and $\|\cdot\|_{\Phi}^{O}$ it follows that $\|x^{(n)}\|_{\Phi}^{O} \geq 2\varepsilon$, i.e.

$$\sup \left\{ \sum_{j=1}^{\infty} x_j^{(n)} y_j : ||y||_{\Psi} \le 1 \right\} \ge 2\varepsilon.$$

Therefore for every $n \in \mathbb{N}$ there exists $y^{(n)} \in h_{\Psi}$ such that $||y^{(n)}|| = 1$ and $\sum_{j=1}^{\infty} x_j^{(n)} y_j^{(n)} \geq \varepsilon$. Because of the convergence of the last sum there exists $N_n \in \mathbb{N}$, such that

$$\sum_{j=N_n+1}^{\infty} x_j^{(n)} y_j^{(n)} \le \frac{\varepsilon}{5}, \quad \sum_{j=1}^{N_n} x_j^{(n)} y_j^{(n)} \ge \frac{4\varepsilon}{5}, \quad \left\| \sum_{j=N_n+1}^{\infty} x_j^{(n)} e_j \right\| \le \frac{\varepsilon}{10\lambda},$$

where $\lambda \geq 1$ is the constant from Proposition 2.1.

Now we will choose inductively a subsequence $\{x^{(n_i)}\}_{i=1}^{\infty}$ and a sequence $\{y^{(i)}\}_{i=1}^{\infty}$.

I) Let $n_1 = 1$. We choose a norm one vector $y^{(1)} = \{y_j^{(1)}\}_{j=1}^{\infty}$ in h_{Ψ} so that

$$\operatorname{sign}\, y_j^{(1)} = \operatorname{sign}\, x_j^{(1)} \quad \text{and} \quad \sum_{j=1}^\infty x_j^{(1)} y_j^{(1)} \geq \varepsilon.$$

Then we choose $N_1 \in \mathbb{N}$ so that

$$\sum_{j=N_1+1}^{\infty} x_j^{(1)} y_j^{(1)} \leq \frac{\varepsilon}{5}, \quad \sum_{j=1}^{N_1} x_j^{(1)} y_j^{(1)} \geq \frac{4\varepsilon}{5}, \quad \left\| \sum_{j=N_1+1}^{\infty} x_j^{(1)} e_j \right\| \leq \frac{\varepsilon}{10\lambda}.$$

II) Because $x^{(n)}$ is weakly null sequence we have that $\lim_{n\to\infty} x_j^{(n)} = 0$ for every $j \in \mathbb{N}$. Thus we can choose $n_2 \in \mathbb{N}$, $n_2 > n_1 = 1$ such that

$$\sum_{j=1}^{N_1} |x_j^{(n_2)}| \le \frac{\varepsilon}{5}.$$

Now we choose a norm one vector $y^{(2)} = \{y_i^{(n_2)}\}_{i=1}^{\infty}$ in h_{Ψ} so that

sign
$$y_j^{(2)} = \text{sign } x_j^{(n_2)}$$
 and $\sum_{j=1}^{\infty} x_j^{(n_2)} y_j^{(2)} \ge \varepsilon$.

Then we choose $N_2 \in \mathbb{N}$, $N_2 > N_1$, such that

$$\sum_{j=N_2+1}^{\infty} x_j^{(n_2)} y_j^{(2)} \le \frac{\varepsilon}{5}, \quad \sum_{j=1}^{N_2} x_j^{(n_2)} y_j^{(2)} \ge \frac{4\varepsilon}{5}, \quad \left\| \sum_{j=N_2+1}^{\infty} x_j^{(n_2)} e_j \right\| \le \frac{\varepsilon}{10\lambda}.$$

Thus

$$\sum_{j=N_1+1}^{N_2} x_j^{(n_2)} y_j^{(2)} = \sum_{j=1}^{N_2} x_j^{(n_2)} y_j^{(2)} + \sum_{j=1}^{N_1} x_j^{(n_2)} y_j^{(2)} \geq \frac{4\varepsilon}{5} - \sum_{j=1}^{N_1} |x_j^{(n_2)}| \geq \frac{4\varepsilon}{5} - \frac{\varepsilon}{5} = \frac{3\varepsilon}{5}.$$

III) If we have chosen $\{n_i\}_{i=1}^{k-1}$, $\{x^{(n_i)}\}_{i=1}^{k-1}$, $\{y^{(i)}\}_{i=1}^{k-1}$, $\{N_i\}_{i=1}^{k-1}$, then we choose $n_k \in \mathbb{N}, \ n_k > n_{k-1}$ such that

$$\sum_{j=1}^{N_{k-1}} |x_j^{(n_k)}| \le \frac{\varepsilon}{5}.$$

Now we choose a norm one vector $y^{(k)} = \{y_j^{(k)}\}_{j=1}^{\infty}$ in h_{Ψ} so that

$$\operatorname{sign}\, y_j^{(k)} = \operatorname{sign}\, x_j^{(n_k)} \quad \text{and} \quad \sum_{i=1}^\infty x_j^{(n_k)} y_j^{(k)} \geq \varepsilon.$$

Then we choose $N_k \in \mathbb{N}$, $N_k > N_{k-1}$ such that

$$\sum_{j=N_k+1}^{\infty} x_j^{(n_k)} y_j^{(k)} \le \frac{\varepsilon}{5}, \quad \sum_{j=1}^{N_k} x_j^{(n_k)} y_j^{(k)} \ge \frac{4\varepsilon}{5}, \quad \left\| \sum_{j=N_k+1}^{\infty} x_j^{(n_k)} e_j \right\| \le \frac{\varepsilon}{10\lambda}.$$

Thus

$$\sum_{j=N_{k-1}+1}^{N_k} x_j^{(n_k)} y_j^{(k)} = \sum_{j=1}^{N_k} x_j^{(n_k)} y_j^{(k)} + \sum_{j=1}^{N_{k-1}} x_j^{(n_k)} y_j^{(k)} \geq \frac{4\varepsilon}{5} - \sum_{j=1}^{N_{k-1}} |x_j^{(n_k)}| \geq \frac{4\varepsilon}{5} - \frac{\varepsilon}{5} = \frac{3\varepsilon}{5}.$$

Let consider the block basic sequence $y^{(k)} = \sum_{j=N_{k-1}+1}^{N_k} y_j^{(k)} e_j^*$. We claim that

(1)
$$\lim_{n \to \infty} \sum_{j=1}^{\infty} \Psi_j \left(\frac{y_j^{(n)}}{\lambda} \right) = \lim_{n \to \infty} \sum_{j=p_n}^{q_n} \Psi_j \left(\frac{y_j^{(n)}}{\lambda} \right) = 0,$$

where $\lambda \geq 1$ is the constant from Proposition 2.1.

Indeed by the assumption that h_{Ψ} is stabilized asymptotic ℓ_{∞} space, there exists $\lambda > 1$ such that for every $m \in \mathbb{N}$ there is $N \in \mathbb{N}$ so that whenever N < 1

$$N_{k-1} < N_k \text{ and } \sum_{j=N_{k-1}}^{N_k} \Psi_j(y_j^{(n)}) \le 1$$
, then holds $\sum_{j=N_{k-1}}^{N_k} \Psi_j\left(\frac{y_j^{(n)}}{\lambda}\right) \le 1/m$ for

every
$$N < N_{k-1} < N_k$$
. Thus $\lim_{n \to \infty} \sum_{j=N_{k-1}}^{N_k} \Psi_j\left(\frac{y_j^{(n)}}{\lambda}\right) = 0$.

Now by (1) it follows that there exists a sequence $\{k_i\}_{i=1}^{\infty}$ of naturals, such that

(2)
$$\sum_{i=1}^{\infty} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} \Psi_j\left(\frac{y_j^{(k_i)}}{\lambda}\right) \le 1.$$

Let $y = \sum_{i=1}^{\infty} y^{(k_i)}$. By (2) $y \in \ell_{\Psi}$ and $||y|| \leq \lambda$. So we can write the chain of

inequalities:

$$||y(x^{(n_{k_s})})|| = \left| \sum_{i=1}^{\infty} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} x_j^{(n_{k_s})} y_j^{(k_i)} \right| \ge \left| \sum_{j=N_{k_s-1}+1}^{N_{k_s}} x_j^{(n_{k_s})} y_j^{(k_s)} \right|$$

$$- \left| \sum_{i=1}^{s-1} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} x_j^{(n_{k_s})} y_j^{(k_i)} \right| - \left| \sum_{i=s+1}^{\infty} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} x_j^{(n_{k_s})} y_j^{(k_i)} \right|$$

$$\ge \frac{3\varepsilon}{5} - \sum_{i=1}^{s-1} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} \left| x_j^{(n_{k_s})} \right| - \sum_{i=s+1}^{\infty} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} \left| x_j^{(n_{k_s})} y_j^{(k_i)} \right|$$

$$\ge \frac{3\varepsilon}{5} - \sum_{i=1}^{\infty} \left| x_j^{(n_{k_s})} \right|$$

$$- \left| \sum_{i=s+1}^{\infty} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} x_j^{(n_{k_s})} e_j \right| \left| \sum_{j=N_{k_i-1}+1}^{\infty} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} y_j^{(k_i)} e_j^* \right|$$

$$\ge \frac{3\varepsilon}{5} - \frac{\varepsilon}{5} - 2 \left| \sum_{i=s+1}^{\infty} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} x_j^{(n_{k_s})} e_j \right| \left| \sum_{j=1}^{\infty} y^{(k_i)} \right|$$

$$\ge \frac{3\varepsilon}{5} - 2\lambda \left| \sum_{i=s+1}^{\infty} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} x_j^{(n_{k_s})} e_j \right| \left| \sum_{j=1}^{\infty} y^{(k_i)} \right|$$

$$\ge \frac{2\varepsilon}{5} - 2\lambda \left| \sum_{j=N_{k_i-1}+1}^{\infty} \sum_{j=N_{k_i-1}+1}^{N_{k_i}} x_j^{(n_{k_s})} e_j \right| \left| \sum_{j=1}^{\infty} \frac{2\varepsilon}{5} - \frac{2\lambda\varepsilon}{10\lambda} = \frac{\varepsilon}{5},$$

a contradiction with the weak convergence of $\{x^{(n_{k_s})}\}_{s=1}^{\infty}$ to zero.

References

- [1] Neil Dew, Asymptotic sructure of banach spaces, PhD Thesis (St. john, s College University of Oxford) 2002.
- [2] H. Hudzik, L. Maligranda, Amemiya norm equals Orlicz norm in general *Indagationes Mathematicae*, **11** (2000), 573–585.
- [3] A. Kaminska Indices, Convexity and Concavity in Musielak–Orlicz Spaces Functiones et Approximatio, XXVI (1998), 67-84.
- [4] A. Kaminska, M. Mastylo The Schur and (weak) Dunford–Pettis property in Banach lattices J. Australian Math. Soc., **73** (2002), 251–278.

- [5] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach spaces I, Sequence spaces, Springer-Verlag, Berlin, 1977
- [6] L. Maligranda Indices and inerpolation. Dissertationes, 234 (1985).
- [7] B. MAUREY, V.D. MILMAN, N. TOMCZAK-JAEGERMANN Asymptotic infinite-dimensional theory of Banach spaces Geometric aspects of functional analysis (Israel 1992–1994), Operator Theory Advances and Applications 77 Birkhauser, (1995), 149-175.
- [8] V.D. MILMAN, N. TOMCZAK-JAEGERMANN Asymptotic ℓ_p spaces and bounded distortions. Banach spaces (Merida) Contemporary Mathematics, 144 American Mathematical Society (1992), 173-195.
- [9] J. Musielak, Lecture Notes in Mathematics, 1034 Springer-Verlag, Berlin, 1983
- [10] B. Tanbay Direct sums and the Schur Property. Tr. J. of Mathematics, 22 (1998), 349-354.
- [11] J. Woo On modular sequence spaces. Studia Mathematica, XLVIII (1973), 271-289.
- [12] B. ZLATANOV Schur property and ℓ_p isomorphic copies in Musielak–Orlicz sequence spaces Preprint (2005).

Department of Mathematics and Informatics Plovdiv University, 24 "Tzar Assen" str. 4000 Plovdiv, Bulgaria Received 10 March 2010

ВЪРХУ ДРУГО ДОКАЗАТЕЛСТВО НА СВОЙСТВОТО НА ШЕР В ПРОСТРАНСТВА НА МУШИЕЛАК-ОРЛИЧ

Б. Златанов

Резюме. Показали сме, че ако спрегнатото пространство на редично пространство на Мушиелак-Орлич е стабилизирано асимптотично ℓ_{∞} пространство спрямо каноничния базис, то пространството ℓ_{Φ} притежава свойството на Шур.