IOBUJIEMHA HAYYHA CECUS — 30roamau ®MU
[TV “INaucwuii Xunengapcku”, [lnosaus, 3-4.11.2000

COMPONENT-BASED REUSE APPROACHES,
NECESSARY PROCESSES AND MTRICS FOR AN ASSESSMENT

Reiner Dumke, Andreas Schmietendorf

The SW-WiVe project performed by Deutsche Telekantallaboration with the Otto-
von-Guericke University provides a detailed analyend offers strategies for software
reuse within industrial software development treai be subjected to critical evaluation.
Traditional evaluation approaches, such as reusgcsiewere critically studied and ne-
cessary processes for continuous reuse were dexkefopthis purpose. In a further step,
currently available, valid reuse metrics for théware development process were classi-
fied and lacking metrics-based evaluation approagiere identified. This paper gives a
survey for the aspects of reuse, the necessargesses for it and its integration into a
corresponding procedure model. Furthermore, theaddsion a metrics supported reuse
approach are represented.

1 Introduction

In areas of industrial production such as the aotora industry, a high degree of reuse of
previously manufactured intermediate products issiered to be a key for a high level of
productivity, short product supply times, low copts manufactured product, and a high level
of quality. The basis for such a procedure is a@ss consisting of a division of labor be-
tween “suppliers” and “final assembly,” as well standards for functional and qualitative
properties of the intermediate products used ireotd fulfill customer requirements for the
final product. Software developers also want topadiis process, which has been successful-
ly applied in all engineering-based industries, arelattempting in particular to use new tech-
nologies, such as object or component orientatioorder to improve what has been a mostly
unsatisfactory situation up to the present.

[Biggerstaff & Perlis 1989] provide the followingegeric definition of reuse: “The reuse
of software is the renewed use of artifacts andectdd knowledge arising from the
development of a software system when developingvasoftware system, in order to reduce
the expenditure for creating and maintaining tlas/ system.”

Another definition for software reuse as a wholgiisvided by [Ezran 1998]: “Software
reuse is the systematic practice of developingrso# from a stock of building blocks, so that
similarities in requirements and/or architecturaws®n applications can be exploited to
achieve substantial benefits in productivity, qtyadind business performance.”

The following conclusions can be drawn from botfirdigons:

- Software reuse (referred to hereinafter simplyrasse”) must always be considered
in relation to software development.

- Artifacts and/or assets include a variety of relesammponents, such as require-
ments, models, and implementation codes.

- Objectives for reuse include increased productivitigher quality, cost reduction,
lower maintenance costs, and also shorter developtinees.

214

Important for a successful reuse are unambiguousagenent decisions with regard to
organizational modifications and from it resultgmtquired ones staff resources.

2 Overview of Reuse Aspects

The “Fifth International Conference on Software B2l 998" classified the problem of
reuse according to various aspects, and presentzhématically in a so-called “reuse di-
amond.” A short description of the equally rankegexcts contained in this reuse diamond is
presented below.

- Strategy and Management- This aspect involves such elements as the ¢shabl
ment of reuse strategies and management suppeveless the need for an organiza-
tional development. (frequently described as aa-@entered organization).

- People- The literature contains various role models ¢bson 1997], [Sodhi 1998],
[Coulange 1998] that interact closely with the stdd organizational form.

- Assets- The term “assets” describes all reusable pradsath as components, ob-
jects, requirements, analysis and design modeties;@ocumentation, etc.

- Technology- This refers primarily to software production @onments and the re-
positories used to store necessary informationdftware development, as well as
appropriate component databases containing reuaabégs.

- Process- The traditional software development proceswipies insufficient support
for reuse. Thus necessary roles and/or persongaireenents, for example, are not
defined.

- Measurement- The use of software metrics serves primarilptovide an element
of quantification in the entire reuse process.

Because the applicability of metrics is closelyoasasted with process quality, which is also
expressed, for example, within the CMM model foaleating the maturity of software devel-
opment, the SW-WiVe project focuses on the aspefctBrocess” and “Measurement.”

3 Processes of software reuse

3.1 Short description and interactions of processes

Diverse and partially quite different considerati@f the necessary processes exist for the
organisation, management and carrying out of seéwause. The following detailed repre-
sentation (Fig. 1) proved to be very suitable watthie project SW-WiVe:

Some explanations:

= Application Family EngineeringDevelopment of an whole architecture for diffdren
software applications of an user domain,

= Component System Engineerihgplementation of component,

= Application Engineering Development/realisation of software applicatidvesed on
reused components,

= Domain Engineering consider architecture-design, requirement analgsid software
development for a family of applications.
- Characterisation of the problem area,
- Specification of the domain requirements,
- Derivation of a domain model through analysis afikir systems,
- Development of an reference architecture for thex demain.

215

Reuse-Management

Application-
Engineering :

Businness l:H Applica_\tion—
Model Applications Family- layered System Model
Engineering
(Component-
System-
Engineering

Doma”.]_ —| Domain Model g
Analysis

“ existing i i :
Applications Reengineering Components
i Candidates K

Domain-Engineering

Standard
Technology Trends
Application Focus

| Components

Fig. 1: Detailed representation of the reuse prEes

Important aspects of reuse processes are thefidatitin, the appropriation/administration
of reusable components and an organisation to neaalhghese aspects. We propose the fol-
lowing processes for an successful reuse approach:

= Identification support (task within the domain engineering)
- All developed components will be registered in talase (repository)
- Aninternet-based application is employed for apéraccess
= Appropriation of reusable components (task of application family engineering and
component system engineering)
- Preparation of suitable components for a reuse desgription, property-sets)
- Appropriation of components with a commercial s@ftevdistribution system
= Administration (task of the reuse management)
- Quality assurance and configurations managememusfable components
- Procedure for inserting, modification and deletddmeusable components
= Organisation (task of the reuse management)

- Processing of criteria for the classification atrdcturing the component catalogue
- Processing of a type-specific description modekfeary reusable component

3.2 Integration of the software-devel opment- and reuse-process
Reuse can be found in all phases/stages of the @&#apment. Therefore it is important
to clarify:

- as the process of reuse and the process of sofearglopment are coupled with
each other and

- where in the phases of software development thiffereht artifacts reuse are be as-
signed.

Figure 2 represents the answers to these questions.

216

Precondition e Team definition
* Reuse Plan
* market-overview
‘ OO process model ‘ —_—_———— e

Repository candidates

Conception Compartment-lexicon

Use-Case-specification (BP)
Architecture-specifications
Templates

. Identification/ selection of

reusable components |
(concept) \

|

|
| —

|

|

|

Analysis

. Use-Case-diagrams
e Class-diagrams

e Interaction-diagrams
e state-diagrams

. Identification/ selection of
analysis-components
¢ COTS-candidates

Test

¢ |dentification/ selection of * Test-cases

test-components

\:\
. |
Design |
I 1 — + Design-classes
¢ |dentification/ selection of : * Subsystems
design-components . Package-Diagrams
* Evaluation/ selection of | * Deployment-Diagrams
COTS :
. |
Implementation |
|
* Class-libraries
. :der;tificatitor:_/selection of /:/ . Interfaces
mplementations- | « Module
components \:\ .
|
|
|
—_—
|
e S

Integration

. Integration of the
components into the
application

Fig. 2: Integration of the software-developmentd aguse-process
The relation between the activities of reuse aedptiases defined in the procedure model

for object oriented software development constityieedominant itself through that so-called
“concrete” reused components.

217

These "concrete" components are the elements edsualuring the carrying out of the
corresponding phase, how for example use caseseslbjects, communications, interfaces,
subsystems and so forth. However, all diagram nsoaéiich can be derived from the
elements mentioned above (use case diagrams,ditggmms, communication diagrams, ...)
are also required for that.

A second kind of reusable artifacts are the pattasn abstracted experiece-based
knowledge to the solution of specific problems. dkehg to the individual phases, the
following types of pattern can be used:

- Architecture Patterns (phase conception) they express elementary stauctiteria
of an software system, like e.g. 2-tier or n-tiiert/server-architecturesviodel-
View-Controller— Paradigm (MVC-Pattern) and so forth.

- Analysis Patterns(phase analyse) used for realisation of requirésn&kith its help,
parts of the domain are specified.

- Design Patterns(phase design) they describe problems recurrimgteatly and ex-
plain its solutions, e.g. generation patterns,cstming patterns or behaviour patterns.

- Implementation Pattern (phase implementation) describe as implementatjmar
cific problems are to be solved in a concrete m@oglanguage.

A third group of reusable artifacts are the soezhilemplates. In dependence of the phase
of software development, different templates aetus

- Conception Project Definition Report Templates, Project Rhéssues Template,
Risk Analysis Template, Work Plan Template, Profsdministration Plan Template,

- Analysis: Analysis Report Template, Project Summary Tenaplefork Plan Tem-
plate, Business Requirements Test Plan Template,

- Design Architecture Template, Design Report Templatechhécal Design Docu-
ment Template,

- Implementation: Installation Plan Template, Back-Out Plan Termglamplementa-
tion Report Template, Defect Summary Report.

Test cases and test scenarios represent impoegasalsle components during the test
phase.

4 Software-metrics and reuse
4.1 Strategy for an application of metrics

For the efficient application of Software Metriddymke 1998] suggests a framework for the
establishment of measurement programs. This framewses the idea of [Fenton 1991] to
group the measurement artefacts into product, geoard resource.

The framework mentioned above consists of a CAltEategy, a CAMEframework, and the
CAME? tools for the recording and processing of metiigsile the CAME strategy refers to
aspects such as the need for the existence ofug goopromote the implementation of soft-

1 C - Community, A - Acceptance, M - Motivation, Engagement
2 C - Choice, A - Adjustment, M - Migration, E - Efiency
3 C - Computer, A - Assisted, M - Measurement, BalBation

218

ware metrics and the need for management decisibasCAME framework relates, for ex-
ample, to the selection process of metrics, théyaiseof scale properties of these metrics, the
degree of coverage reached, and the efficiency eifics usage by means of tools support.
Because Deutsche Telekom has already made straliegjgions regarding the use of software
metrics, the analysis concentrates on the selectfometrics (CAME framework) and the
determination of an overall degree of coverageafa@ilable reuse metrics.

CAME Metrics: CAME Strategy:

Metrics Choice

-
[T

Metrics Adjustment @

Metrics Migration

~S0O30Q@® 3D

Metrics Efficiency (CAME Tools: e.g. Metrics Data Base)

Abbildung 3:Uberblick zum CAME-Framework

4.2 Requirements of a metrics-supported reuse approach

Based on the analyses performed and the generacsnptogram framework developed

by the Otto-von-Guericke University at Magdebutwg following general requirements were
established for a software reuse that is quantdredithus can be evaluated:

1.

2.
3.

In software reuse, the already existing reuse n®etran also be used, as well as the me-
trics valid for other paradigms, in order to makerh easier to quantify and thus evaluate.
Selected metrics should be relatively scaled teettient possible.

Above all, the selection of metrics must includergvarea (i.e. the products, the process,
and the resources) in the evaluation.

The objective for the selected metrics must alstolachieve the highest possible level of
automation. This also includes “traditional” measuent tools. The following table de-
scribes the current situation:

The measured values themselves must be integratedmietrics databases. This also
applies for access statistics of individual reusechponents.

In addition to the predominately cost-oriented mesirthe aspects of quality improvement
or influence must also be considered. That is aliduch questions how

Particular attention must be paid to the motivafanreuse. For this is to investigate

An efficient use of metrics is however of the as@yof the current software development

situation and the so recognizable success-prorstaeing-points dependent.

219

4.3 Evaluating Reuse Maturity

Using the “Capability Maturity Model (CMM)” propodeby the SE}, which evaluates the
maturity of a software development in five levdliSpdhi 1998] proposed a corresponding
“Software Reuse Maturity Model.” The starting pofot considerations was the insufficient
evaluation of necessary details in the processdtiware reuse within the CMM. This evalua-
tion model contains the following five levels. Thehievement of a level is determined by
means of a questionnaire.

- Level 1 -Informal practices

- Level 2 -Formal software reuse

- Level 3 -Implementation of formal reuse

- Level 4 -Management return on investment ROI
- Level 5 -Optimization

In summarizing the evaluation possibilities studitid SW-WiVe project proposed a variant
for evaluating software reuse maturity that is addpgo Deutsche Telekom's requirements.
This variant uses the following three levels:

Reuse initiatives: This level basically implies the contents of Le®eland considers the
aspects of reuse separately from one another domibst part. Typical here are the implemen-
tation of prototypical reuse databases with mochn&al assets, but without defining the
processes necessary for effective use and withaitagegic decision by management on a
procedure for reuse.

Assessment-based reus&his level basically implies the contents of Le@elThe intro-
duction of valid metrics related to reuse means phacesses, resources, and the product (as-
sets) can be evaluated. The prototypical reusédsés that were implemented are developed
further into comprehensive approaches, and are dka#able to everyone involved in the
software development. A reuse-centered organizaitidavelopment has been established in
order to develop domain-specific components, whighalready recognized as standard.

Controlled reuse ProcessThis level basically implies the contents of Ledel.e. a me-
trics-supported reuse approach is establisheddardo clearly quantify the value added by
reuse. In addition, the necessary organizationatldpment has progressed to the point that
centers exist for actual component creation, mamage of available components, and actual
application development.

4.4 Metricsin the process of the software-reuse

Selection of the metrics and statement of thebaitieis (Choice/Adjustment) corresponding
the GQM-method (Goal Question Metric). With it didiion of the goals is presupposed.

* Software Engineering Institute
® ROI Return on Investment

220

Software-reuse-assessment

R SN

current situation Potential Potential benefit
= explicit /implicit = Reusability = Save of time
Reuse
= Costs » Quality-
= Related to the staff improvement
= Availability
= |nternal/external = Save of costs
Reuse

Fig. 4: Initial stage for the metrics choice

The goals already imply the questions and led imatedo the metrics. The concrete align-
ment of the metrics is however regarding produaicesses or resources to plan. We want to

restrict ourselves first of all on thpeoduct.

Software-reuse-controlling

— N

Estimation/ measuring Evaluation Improves/ Changes
N
Y
= Life-Cycle-metrics = Difference- = Asset- Expansion
= Reuse-benefit procedure
estimation = Asset-
= Reuse-(Quallty-/Eff_ort- » Regressions- Substitution
/Shar_z-)/Re%ro%uctlon analysis
(outside/inside Reuse) » Expansion/
Staff related ' Thrtleshold- 'trr?gggﬁgn:m of
= architecture-levels analysis techni
= architecture-areas . echniques
= Exploration _
Repository-metrics * Repository-
= access-distribution Improvement

= use-frequency
= Akzeptanz

Fig. 5: Supplement of the metrics with life-cycéaxd architecture-assessments

5 Conclusion and Outlook

The SW-WiVe project paid particular attention te gpecified success factors for software
reuse, and shows how one part of the problem cappeached and/or how a solution could
be created. In addition to the studies presentesl tegarding the use of metrics and necessary
reuse processes, the project also defined a prbfussa generic description of assets and an
initial approach for formalizing this descriptionrbugh the use of metrics. The project also

221

made a practical study of reused components alreagyloyed by specific companies, and
identified features that are closely associatet wisuccessful reuse of these components.

REFERENCES

[Biggerstaff & Perlis 1989] Biggerstaff, T. and RerA.: Software Reusability, Band | and Il
in the Frontier Series. ACM Press, 1989

[Coulange 1998] Coulange B.: Software Reuse, Sprivgrlag, London 1998

[Dumke 1998] Dumke, R., Foltin, E., Winkler, A.SA Framework for Object-Oriented Soft-
ware Measurement and Evaluation. Proceedings o ABRTED Conference on
Software Engineering, Oct. 28-31, 1998, Las Ve§a4.29 - 132

[Ezran 1998] Ezran, M., Morisio, M., Tully, C.: Rt&cal Software Reuse: The essential
Guide. Paris: Freelife Publ., 1998

[Fenton 1991] Fenton, N.: Software Metrics — A Riggs Approach. Chapmann & Hall Inc.,
London 1991

[Jacobson 1997] Jacobson, 1., Griss, M., Jonssordftware Reuse (Architecture, Process
and Organization for Business Success), Reading/Milison-Wesley 1997

[Sodhi 1998] Sodhi, J.; Sodhi, P.: Software Reldmain Analysis and Design Processes.
New York ...: Mc Graw-Hill 1998

Prof. Reiner Dumke
Otto-von-Guericke-Universitat Magdeburg
Fakultat Informatik, Institut fur verteilte Systeme
Postfach 41 20, D-39016 Magdeburg

EMail: dumke@ivs.cs.uni-magdeburg.de

Dipl.Ing. Andreas Schmietendorf

T-Nova Deutsche Telekom Innovationsgesellschaft mbH
Entwicklungszentrum Berlin

WittestraRe 30N, D-13476 Berlin

EMail: A.Schmietendorf@telekom.de

222

