
258

ЮБИЛЕЙНА НАУЧНА СЕСИЯ – 30 години ФМИ
ПУ “Паисий Хилендарски”, Пловдив, 3-4.11.2000

OBJECT MODELLING AND INTELLIGENT RESOLVING:
FORMAL MODELS, SOFTWARE ENVIRONMENT

AND APPLICATIONS

George Atanassov Totkov, Rossitza Jeliazkova Doneva

The present paper makes an analysis of the conceptual models in various subject domains. As
a result it offers a categorial model of a subject domain, which can be used for its formal
specification. The corresponding discrete structures model concepts like meta-area, process,
language, concept, task, subject domain, etc. The proposed approach allows automatization
of the process of designing and building-up of Large integrated development environments
for conceptual modelling. The functionality of the environment includes possibilities for
building up hierarchies of formal specifications, structures and objects, support systems and
methods for automated decision planning in various SD (numerical calculations, solving of
problems in the field of the algebra, chemistry, physics, plane geometry, etc.).

AMS Subject Classification: 68N30 Mathematical aspects of software engineering (speci-

fication, verification, metrics, requirements, etc.); 68N19 Other programming techniques (ob-
ject-oriented, sequential, concurrent, automatic, etc.); 68T30 Knowledge representation;
68T20 Problem solving (heuristics, search strategies, etc.)

Introduction . In terms of logic the presented conceptual models [1, 6] of subject domains

(SD) can fall into one of the following two types – basic (modelling of internal knowledge
about the meta-domain and the computer system itself) and conceptual (external knowledge of
a specific SD). According to the proposed model the meta-domain is presented in terms of a
many sorted algebraic system (MAS) [7], called basic MAS. Every concept (or task) in a SD
is specified by subset of a logical language of first order. The SD is modelled by conceptual
schemes (hierarchical systems of packages – concepts and tasks, grouped thematically) in ob-
ject-oriented manner. The concept (so called “abstract class”) is modelled as heterogeneous
discrete structure with attributes – objects of the classes built up already and with integrity
constraints – relations among the attributes in the terms of a MAS, specified before. The ele-
ments of the SD – types, classes and tasks (including sorts, functions, relations) are treated as
objects within one common hierarchical system. Within this approach each object can be
treated as a new class (parameterisation) and it can participate in the building of the hierarchy
of inheritance. The developed approach allows designing and building-up of integrated envi-
ronment for conceptual modelling in various SD. The proposed system can be defined as ob-
ject-oriented system, in which the inheritance object_to_object generalises simultaneously
class_to_class and class_to_instance inheritances. An important consequence is the fact that
each class – an successor of a class, already built preserves the categorial type of its predeces-
sor. As a result the built-in typology is invariable and doesn’t change during the subsequent
descriptions. Most essential for the applications is the fact that the successor classes of the
superclasses define new sorts, functions and predicates within the frame of the system. An im-
portant feature of the offered models is the extensibility – new classes are specified on the ba-

259

sis of those that already exist and the latter are modified by addition, removal and change of
attributes, constraints or objects in which case the meta-type is preserved.

Formal Models. The conceptual scheme of the SD is built upon basic set of built-in types
and classes including sorts, functions, and relations.

The set },,,,,{ CONSTRVARPROCFEATNAMECATTb = of built-in meta-types (base

categories) and subcategories determines the beginning of the hierarchy of the modelled types,
where CAT means a subset of conceptual categories, NAME – of names; FEAT – of indica-
tors (properties, characteristics and relations), PROC – of the processes, VAR– of variables
and CONSTR – of the constructors of types.

The categories CAT are SBJD – subject domain, CM – conceptual model, CSH – con-
ceptual scheme, SSH – conceptual subscheme, PACK – package, CL – abstract class, OBJ –
dynamic class (object), TASK – task, COBJ – conceptual object, CSTR – categorial structure,
FM – functional model, FCM – functional calculating model.

The category NAME of the names of the elements of the SD has a particular place. For
every other category, the a corresponding subcategory of NAME is introduced.

FEAT represents a subset of built-in types of categorial characteristics and properties.
},,,{ ROLEPREDFUNDATAFEAT = , where DATA , FUN , PRED and ROLE are the

corresponding subcategories for the subjective, functional, predicate and role characteristics.
All of the successor of DATA are abstract classes of the modelled SD. An immediate succes-
sor of PRED is a type Eq (a relation of equivalence in DATA). The type Eq is ultimate

predecessor of the hierarchy of the predicates of the equivalence, automatically specified for
each representative of DATA subcategories. On its part, FUN gives rise to hierarchy with 12
successors – the functional subtypes 1221 ,,, fff … , everyone of which modelled by an object

with specified structure and methods of management of the interface protocol. Each functional
category is implemented by an object with characteristics priority, commutativity, associativ-
ity, etc. For every concrete SD the basic MAS is expanded if necessary and is denoted with

sdFEAT .

ROLE is a special category modelling the so-called roles of the elements in the SD. For
the expression of the semantic relations among the elements of the constructional objects and
the objects themselves in the set of names NAME , the subcategory “names of the roles“is in-
troduced.

The fourth metacategory PROC is presented by two categories – SYSP (for models of vari-

ous, internal system processes) and METHP (for methods with subcategories PM and GM –

private and general methods). The internal processes model separate periods of the life cycle
of the representatives of the categories. They are related to the quantitative transformations
from one category to another. The separation of the processes has rather a methodical meaning
– a number of processes can be included in the MAS signature, and the categories of the corre-
sponding arguments can be added to the set of sorts S and interpreted appropriately. Impor-
tant places within the hierarchy beginning with SYSP have some “internal“ processes, participat-

ing in the environment organization and management as printing, converting, etc.
The elements of METHP are used for automatic synthesis of solutions for the specified prob-

lem (element of the TASK category). The methods of the type PM are applied to the internal
model of the problem (from the FM category). The PM methods are implanted into the in-

260

ternal model of the problem and in this way the functional-computational net (FCM category)
is created. The semantics of the nodes is modelled by dynamic recalculation of the list of cor-
responding local characteristics according to their type. That list is used especially for design-
ing and carrying out of the global strategy with heuristic considerations.

The category }:{ sdx FEATCATSUBJxVVAR ∪=∈= is presented by SUBJ – an indexed

family of categories.
The elements of CONSTR are operations over elements of other categories for construct-

ing new ones. Basic constructors are set, sequence and name. In this way new concepts, tasks,
topics and inheritance graph etc. could be specified. The classes and tasks connected in the
a_kind_of hierarchy are grouped in packages. Packages are organized in hierarchies and build-
up the conceptual scheme of the SD.

Let SD be the set of all elements of the modelled SD, and x be its arbitrary element. x
could be identify and revealed as individual concept in the subject domain by the roles played
by other SD elements in the x life cycle and in the processes participated by x . Let)(xpr be

the set of all SD elements playing any role related to x as a concept. If ∅=)(xpr , then x

will be called an elementary element, otherwise – compound element. In the first case x is a
representative of a determinate category of bT .

The set of all elements of SD that have identical roles r in relation to x will be denoted
with)(xprr . As a result, the categorial structure

},),(:,{)(rr Nrzxprzzrxcstr ∈∅≠=><= is connected uniquely with every compound

object x of SD .
The set of all elements quoted explicitly in the x structure will be denoted with)(xref .

Let)(, brc TNDT = be the set of the categorial structures over bT that are constructed us-

ing the set of roles rN . Then bbrcc TTNDT \)(,= will be the set of compound categorial

structures (types).
Definition 1. The ordered pair >=< strnx , will be called abstract class (relating to bT),

if bTxref ⊂)(. Where NAMENn CL =∈ is the name of the class and)(, brc TNDstr ∈ is

his categorial structure (denotations:)(),(xcstrstrxnamen ==).

The set of all compound classes is an interpretation of cT . With the purpose of convenience

that interpretation will be denoted with cT again. For every abstract class x , the set of all posi-

tions in the x structure that are belong to a sort of S will be denoted with)(xS .)(xS could

be interpreted as particular set of S -sort variables. Consequently the various types of substitu-
tion from)(xS into the set of terms (sdTerm) over sdFEAT could be considered [3].

Definition 2. Let >=< strnx , be an abstract class relating to bT and h be a substitution

from)(xS into sdTerm . The ordered triple >=< hxno o ,, will be called a dynamic class

(object) with name NAMEno ∈ , substantial part x and generic substitution h . The object

o is successor of the class x (relating to h).

261

Let Obj be an arbitrary set of objects. The following denotations are introduced:

horef =)(, ∪ Objo
orefObjref

∈
=)()(, ononame =)(, xospart =)(,

∪ Objo
onameObjname

∈
=)()(and for categorial structure:)()()(, brc TNDxcstrocstr ∈= .

Definition 3. The set of objects Obj will be called compatible system of objects if the

following conditions are satisfied:
i) ∞<Obj (finiteness);

 ii) 212121)()(,, ooonameonameObjoo =→=∈ (uniqueness);

iii) →=∈=∈ 2,1),(),()(,, 2121 iorefyynameynameObjoo ii 21 yy = (completeness);

iv) bTObjnameObjref ∪⊆)()((connectivity);

v) ∅=∩→∈)(}{ orefoObjo (be acyclic).

Definition 4. The task is an ordered pair >=< ObjnTask , , where NAMEn∈ and Obj is

a compatible system of objects.
Denotations:)(Tasknamen = ,)(TaskcstrObj = .

Definition 5. The conceptual object is a task or an abstract class.
Definition 6. The package Pack is a set of conceptual objects that satisfies the condi-

tions:
i) ∞<Pack (finiteness);

ii) 212121)()(,, cccnamecnamePackcc =→=∈ (uniqueness).

Definition 7. The sequence of packages),,(21 …PPseqPS = will be called conceptual

subscheme if the following conditions are satisfied:
i) ∞<PS (finiteness);

ii) 212121)()(,, cccnamecnamePScc =→=∈ (uniqueness);

iii) ∅=∩→∈∈)(}{, crefcPSPPc ii (be acyclic);

iv) jii PxcrefxPSPPc ∈→∈∈∈)(,, for certain ij > (consistency).

Definition 8. Let an partial ordering ≺ to be settled in the set of packages cshP . The pair

>=< ≺,cshPcsh will be called conceptual scheme if the following conditions are satisfied:

i) ∞<cshP (finiteness);

ii) →==∈∈)()(,),2,1(, 2121 cnamecnamePPiPPPc cshiii ≺ 21 cc = (uniqueness);

iii) ∅=∩→∈∈)(}{, crefcPPPc csh (be acyclic).

iv) jijcshjcshii PPPxPPcrefxPPPc ≺,,)(,, ∈∈∃→∈∈∈ (consistency of relation ≺

with the class inheritance).
Definition 9. Every set of conceptual schemes is a subject domain.
On the basis of the above theoretical study of categories and objects in a various SD the

corresponding model of large integrated development environment for conceptual modelling
of SD [3] is offered.

Software Environment. A proper architecture [3] of the computer environment for de-
signing, constructing and development of intelligent object-oriented systems able to support
knowledge-base and automatic synthesis of solutions is proposed as consequence. The model

262

of the environment consists of 2 parts – kernel and superstructure. Models of meta-
knowledge (knowledge, independent from the applications) such as an abstract MAS, a task-
solver interpreting the decision planning system, a processor for supporting conceptual
schemes of SD and an adaptive interface has been realized in the kernel. The superstructure
contains models of the meta-domain and of particular methods for problem solving, a concep-
tual model of the SD etc.

An esential characterristic of the environment is the in-built ability for spiral iterative de-
velopment in the course of the time of every application designed and supported by the means
of the environment. The latter in particular means that the model and the architecture of each
next application is a development (in time, resources, on another level) of some previous ap-
plication.

A methodology which is offered for building up of applications not only enables the crea-
tion of independent applications (diversified SD) on common base – a specific base MAS but
on the vice versa lets the specifications of a SD be used with diversified base MAS. Another
important feature is the ability for automatic synthesis of solutions for tasks, specified as
classes in the SD. As a result there is an advantageous side effect of the adopted approach –
the adaptivity of input-output interface to different SDs.

The architecture of the software environment (Table 1) can conventionally be treated as 3-
level entity – application, meta-expert and base level, which on their part are subdivided into
7 sublevels – users, conceptual, expert, interface, logical, physical and system.

The models of the application level reflect the outlooks of the final user of a SD, the
meta-expert models specify the knowledge-base for the SD and the meta-domain considered,
and the base models realize logical and physical structures providing effective management of
the knowledge-base.

The design, construction and development of each level or sublevel is carried out according
to the object-oriented principle.

The base model is the base of effective construction and management of the knowledge in
the SD. It consists of 3 sub-levels – system (closely related to the computer environment),
phisical (supporting internal presentation of the used data structures) and logical (realizing the
offered formal models).

LEVELS

SUB-
LEVELS

OBJECT-ORIENTED
ENVIRONMENTS

CLASSES
SUP-

PORTED

s
u
p
e
r
.

APPLI-
CATION

USER
CLASSES
TASKS

CLASSES
TASKS

… …
^Class

^Problem

Classes and
tasks specifi-
cations of SD

CONCEP
CEP-
TUAL

SUBJECT
DOMAIN

SUBJECT
DOMAIN

… …

^Class
^Problem
^Package
^Schema

Conceptual
schemes and
automated
problems

solving in SD

263

.

.

.
s
t
r
u
k
t
u
r
e

META-
EXPERT

EXPERT
M
S
S

S O L V E R X_Kind
X_Oper

X_ProcNode
X_ProcNet

X_CompModel

 Meta-
environment

X Solver
METHODOLOGY METHODS

INTER
FACE

L
A
N
G
U
A
G
E

D
I
A
L
O
G

E
D
I
T
O
R

H
E
L
P

…

X_Editor

X_Dialog

X_Help

Interface
Specification

language

K
E
R
N
E
L

BASE

LOGI-
CAL

LOGICAL MODELS

Kind Oper
SKnot

SKnotDesSort
SNet ProcNode

ProcNet
CompModel

Schema
Editor Dialog

Formal model
Structures

Abstract MSS
Common
problem
solver

Universal
interface

PHYSI-
CAL

PHYSICAL MODELS
PList NetNode

Net

Internal repre-
sentation of

data structures

SYSTEM Borland Delphi 5.0 WINDOWS’98 Class

Object-
oriented

software envi-
ronment

Table 1. Architecture of Software Environment for Conceptual Modelling

The choice of a system sublevel defines to a great extent the characteristics of the envi-
ronment. A highly developed and effective object-oriented environment for programming and
an appropriate operation system have been chosen in this case.

The physical sublevel supports the physical models of the abstract data structures. Due to
the high degree of abstraction of the models building up the next (logical) level, classical dy-
namic structures are preferred here – structures as PList, NetNode, Net, etc.

On the logical sublevel the experts and the users ideas are integrated into one schema
which is independent from the specific SD, the knowledge-base management system and the
selected internal presentation. An abstract MAS (Kind , Oper), a task solver (CompModel)
able to support an internal functional model (SNet, SKnot, SKnotDesSort) and methodics for
problem solving (ProcNode, ProcNet) of tasks, universal interface (Editor , Dialog) and a
processor for supporting conceptual schemes of SD (Schema) are modelled here, based on
object-oriented principle (by introduction of appropriate classes). Important elements of this
level are the linguistic component and the global strategy (as a functional characteristic of
CompModel) for solving problems in the SD. The programming tools built up on the base
level make up the kernel of the system (Shell).

264

Within the meta-expert level unambiguously and uncontradictorily are integrated the
views and the ideas of different users and experts about the meta-domain considered (a set of
SDs, admitting formalising on the base of one MAS a common methodics for task-solving and
unified interface).

The expert sublevel models the meta-knowledge (common concepts, hierarchy and classi-
fications), disregarding the particular concepts, methods and facts of a specific SD. An object-
oriented environment, supporting knowledge of the chosen base MAS (X_Kind , X_Oper) is
build on this level by specification of logical models. It also supports methodics and methods
about automatic synthesis of task-solutions in the SD (X_ProcNode, X_ProcNet,
X_CompModel).

On the interface sublevel the input/output system of the meta-environment is specified. It
is build up as a typical system application. The adapted approach allows quick adaptation of
the environment to various applications. The designed and realized interface is used by all SDs
on the next application level. The specified classes here (X_Editor , X_Dialog, X_Help) add
to the object-oriented environment for conceptual specifications of the expert level with addi-
tional abilities for dialog and communication with the final user.

The software tools from the base level and the realization of the specific meta-environment
make up a primary application (marked in Table 1 with X), which represents object-oriented
environment for conceptual modeling with automatic synthesis of solutions in the meta-
domain, modeled here.

Applications. The model of the application level is built up on the basis of the concept
conceptual scheme (Def. 8), by the tools of the specified environment X. The conceptual
scheme of a specified SD, together with the specific meta-environment, in which it is realized,
is called secondary application. The secondary application maintains users’ requests for task-
solutions (tasks) and expert knowledge (packages) for grouping concepts (objects, classes,
schemes). The automatic synthesis of solutions in the specific SD is carried out by the decision
planning system in the meta-domain built-up on the previous architecture level.

The application level consists of 2 sublevels – conceptual and user’s. On the conceptual
sublevel concepts, methods, and conceptual schemes of a specific SD are modelled. The con-
ceptual schemes of SD can be built hierarchically from subareas called packages, containing
hierarchy of classes and tasks presenting essential knowledge of concepts and the relations
among them. The conceptual scheme and its elements are presented by objects from the corre-
sponding classes, built up on the logical level (Scheme, Package, Class, Problem).

On user’s sublevel, every final user can realize his own model of knowledge on some part
of SD adding to it and developing the already existing conceptual scheme in the system or cre-
ating new ones.

The architectural layers of the environment allow the development and support of diversi-
fied applications. Some of these are typical instrumental computer environments for automatic
specifications and synthesis of task-solving in a SD, and others – dialog systems for manage-
ment of conceptual knowledge-bases of a specific type.

As a result it is possible to build up applications in specifically various SD by an upgrade
of separate levels of the system until a primary or secondary applications are obtained. The
created primary applications are meta-environments for calculations with real numbers, solving
of chemical [5] and plane-geometrical tasks [4]. Specific conceptual schemes for calculation
with great precision are realized into them, together with solving of tasks in stereometry, kine-
matics, chemistry, etc. [2].

265

Conclusion. The system has the following characteristic features, abilities and peculiari-
ties:

a) automated building up of a base level –a model interpretation of the signature of the
base MAS

b) specification of the concepts (classes) and tasks in a selected SD with the help of a spe-
cial language

c) object-oriented specification of diversified SD on the basic of MAS as hierarchy of
packages, classes and tasks

d) in-built context-sensitive help system
e) adaptivity of the I/O interface to diversified SD and meta-domains (according to the ba-

sic MAS)
f) automatic translation of specifications of the classes/tasks to internal system presentation
g) automatic synthesis of task-solutions within the modeled SD
h) application for calculation and automatic training, etc.
The characteristics a), d), e) and f) are invariant in terms of diversified superstructure, i. e.

they are functions of the base level of architecture; b), c) and g) are functions of a specific
meta-expert level, where h) is a properly of the application level which has been built-up.

REFERENCES

1. Brodie M. I., J. Mylopoulos, J.W. Schmidt, Conceptual Modelling, Springer Verlag, N.Y.,
USA, 1984.
2. Doneva R., Totkov G., OMIR – An Object-Oriented Tool for Conceptual Modelling and
Automatic Solving of Secondary School Problems, Pre-Conf. Proc. of the IFIP WG 3.1/3.5
Open Conference “Informatics and Changes in Learning”, Gmunden, Austria, Jun 7-11, 1993,
p. 3-5.
3. Donevа R., Automated Construction of Intelligent Object-Oriented Environments for
Conceptual Modelling, Synopsis of the Doctoral Dissertation, Sofia, 1994.
4. Doneva R., Computer plane-geometry in object environment, I-st National Conference
INFORMATICS'94, Sofia, november 8-10, 1994, p. 98-104.
5. Doneva R., Resolving chemical computational problems in object-oriented environment,
Mathematics and Education in Mathematics, XXVI Spring Conference of the UBM, 1997, p.
244-249.
6. Tyugu M., Knowledge Based Programming, Addison-Wesley, 1988.
7. Wirsing M., Bergstra J. A. (eds.), Algebraic Methods: Theory, Tools and Applications,
394 LNCS, Springer Verlag, 1990.

George Atanassov Totkov
Plovdiv University, 24 Tzar Assen Str.
BG-4000 Plovdiv, BULGARIA
tel. 268636, e-mail: totkov@pu.acad.bg

Rossitza Jeliazkova Doneva
Plovdiv University, 24 Tzar Assen Str.
BG-4000 Plovdiv, BULGARIA
e-mail: rosi@pu.acad.bg

