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Abstract

Let (M, g) be a four-dimensional Riemannian manifold. The Jacobi operator
Rx is symmetric linear endomorphism of the tangent space M, at a point p € M
defined by Rx (u) = R(u, X, X ), where X always belongs to the unit sphere S, M at
p . If eigenvalues of Rx are pointuise constants on M, then (M, g) is called point-
wise Osserman manifold. In this paper we prove that (M, g) is a four-dimensional
Riemannian manifold such that trace and determinant of Jacobi operator Rx are
a globally constant on M if and only if (M, g) ( almost everywhere) locally is a
globally Osserman manifold.

AMS Subject Classifications: 53B20, 15A69.

Let (M, g) be an n-dimensional Riemannian manifold with metric tensor g and cur-
vature tensor R. The Jacobi operator Rx is a symmetric linear endomorphism of the
tangent space M, at a point p € M defined by Rx (u) = R(u, X, X), where X belongs to
the unit sphere S, M. Since X is eigenvector of Rx with the corresponding eigenvalue
0, then the characteristic equation

(1) det(R(ei, X, X, e;) — cgij) =0
of Rx with a root ¢ can be represented in another form
(2) c(c"_1 + A2 4 Jpac+ Jn—1) =0,

where J; = J;(p; X), (i = 1,2,....,n — 1). We have from (1) that J;(p; X) = traceRx
and J,—1(p; X) = detRx. A Riemannian manifold (M, g) is called a globally Osserman
manifold if the eigenvalues of Jacobi operator Ry are a globally constants on M, re-
spectivelly (M, g) is called a pointwise Osserman manifold if the eigenvalues of Jacobi
operator Rx are a pointwise constants on M [1] . A gobally Osserman manifolds was
investigated from Quo-Shin-Chi which proved that an n— dimensional Riemannian man-
ifold (M, g) is a globally Osserman manifold if and only if (M, g) locally is a symmetric
space of rank 1 or (M, g) is a space of constant sectional curvature, and it holds when
n = 1(mod2), n = 2(mod4) and n = 4 [7]. The Osserman conjecture was generalized
using characteristic coefficients of Jacobi operator in the case dimM = 4 as follows:
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Theorem 1 [10] A four-dimensional Riemannian manifold (M,g) (almost everywhere)
locally is a globally Osserman manifold if and only if the characteristic coefficients Jq
and Jo of Jacobi operator Rx are a globally constants on M.

Further in the present paper we will use the following;:

Proposition 1 [3] [9] If a four-dimensional Riemannian manifold (M, g) is a pointwise
Osserman manifold, then is hold transformation:

Y = OzX—f—ﬁXl +’7X2+(5X3,
(3) Y1 = —[BX+aX;—0Xs+ X5,
YQ = 7")/X + 5X1 + OéXQ — ﬂXg,
Y; = —(5X—’)’X1+5X2+’)’X3,

for the eigenvectors X, X1, Xo, X3 of the Jacobi operator Rx and for the eigenvectors
Y, Y1,Ys,Ys of the Jacobi operator Ry , where X,Y € S, M and hence o+ 3% +~2+6% =
1.

Q. Sh. Chi proved either that if (M,g) is a four-dimensional pointwise Osserman
manifold, then the eigenvector fields of any Jacobi operator Rx (say X, A, B,C) are a
smooth vector fields suppose defined in a neighborhood U, at a point p € M.

We remark that at a single point p € M holds X |,= X, X [,= A4, X5 |p,= B, X3 |,=
C. Stanilov and Belger proved the following:

Proposition 2 [9] Let (M,g) be a pointwise Osserman manifold. Then at a neigh-
borhoud of any point of manifold the eigenvalues a, b, ¢ and the eigenvector fields X, A, B, C
of any Jacobi operator Rx satisfied the following two systems:

p(c—b) +1(c—a) =0,
(4) Y(a—c)+0(a—b) =0,
0(b—a)+ o(b—c)=0;

X(a) = (p+v)a—vb—pc,
X(b) = —va+ (v+A)b— Ac,
X(c) = —pa—Xo+ (A + p)c,

where
@:g(VAB,C), w:g(vBCaA>7 HZQ(VCA,B),
A=9(VaA X), p=9g(VpB,X), v=g(VcC, X).

Our main aim in this note is to complete the result of Theorem 1 proving the follow-
ing:

Theorem 2 Let (M, g) be a four-dimensional Riemannian manifold. Then (M,g) (al-
most everywhere) locally is a globally Osserman manifold if and only if the characteristic
coefficients J1 and J3 # 0 (trace and determinant) of Jacobi operator Rx are a globally
constants on M.
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Proof. Because the only if part is trivial we will prove in the sequel only the if part.
From our assumption J; and J3 # 0 to be globally constants on M it follows that J; and
Js # 0 are pointwise constants on M | which is hold if and only if (M, g) is a pointwise
Osserman [8]. If we denote by «a(p) the matrix of the system (5) considering a,b, ¢ as
variables, then according to our hypothesis (M, g) to be a pointwise Osserman it follows
that a(p) has a pontwise entries and also Ranka(p) is a pointwise function at any point
p € M . All possibilities cases of Ranka(p) are Ranka(p) = 1,2,3 In these cases any
Jacobi operator Ry has respectivelly 1,2, 3 eigenvalues. Further we will consider all this
cases separatelly.

At first we denote by €2; the subsets of M defined by the property that any Jacobi
operator Rx has i eigenvalues on §2; where i = 1,2,3 . Following Kato [2] we can prove
easly that all sets 21,25, Q3 are open and dense almost everywhere on M.

Case 1. Let Ranka(p) = 1. Then any Jacobi operator Rx has three equal eigenvalues
at any point p € 2 , i.e.:

(6) a(p) = b(p) = c(p)-

and (M, g) is a space of a pointwise constant sectional curvature at p. According to
the Shour’s theorem we have that (M, g) is a space of constant sectional curvature and
hence (M, g) is a globally Osserman manifold on ©; [11] .

Case 2. If Ranka(p) = 2, then any Jacobi operator Rx has two eigenvalues at any
point ¢ € €1 . Now we have a13(q)as2(q)ass(q) = 0 and as we said above two eigenvalues
of Jacobi operator are equal, suppose

(7) a(q) # b(q) = c(q)
Then system (5) defined in an open neighborhoud V, C Q5 has the form

X(a) = (p+v)(a—0),
(8) X(b) = M(bli a) = v(b—a).

From our assumption X (J3) = 0 and from the last system we have
X(J3) =bla—0b)(n+v)=0.

From here and (7) we have b(q) =0 or (1 +v)(q) =0 .

In the first subcase when b = 0 , from (8) it follows that ¢ = 0 and now from any
results in [4] we have that (M, g) is flat on V, , which is a trivial case for a globally
Osserman manifold.

In the subcase or (1 + v)(g) = 0 from the system (8) we have X(a) = 0 and then
X(b+c) =0 on V,. Now from the second row of (8) we get X (b) = —pa = —va, hence
X(b) = (p—v)a =0 at g . Further from (8) we have (u — v)(gq) = 0 at ¢ and hence
u(q) = v(q) =0 at ¢q. Then from the system (5) it follows that X (a) = X(b) = X(¢) =0
at any point ¢ € M which means that a, b, ¢ are a globally constants and hence (M, g)
is a globally Osserman manifold.

Case 3. If Ranka(p) = 3, then any Jacobi operator Rx has three eigenvalues dif-
ferent from zero on a neighborhood (say U,) at a point p € Q3. In this case we have

385



a13(p)as2(p)ass(p) # 0 and it is possible to write the well-known relation (6):

(9) op:X) _ v X) _ 0(pX)

asz1(p) asz(p) as3(p)

Now from (9) using the quaternionic transformation (3) we obtain:

o(p; X) =9(VaB,C), ¥(p; X) =9(VaC,A), 0(p; X)=g(VcA, D),
op;A) = 9(VxC,B), ¥(p;A) =9(VeB,X), 0(p;A) =9(VeX,C),
o(p; B) = 9(Ve X, A), ¥(p;B) =9(VxA,C), 0(p; B) =9(VxC,B),

o(p;C) =9(VeA, X), ¢(p;C) =g(VaX,B), 0(p;C) =9(VxB,A),
o(p;aX +bA) = —a39(VaB,C)+ a?bg(VxB,C)+

+(12b(g(VAB, C) - g(VXBa C)) - bjg(vXBv C)a
P(p;aX +bA) = a3g(VeC,A) +b3g(VeB, X)+

+a‘2b(g(vBBv A) - g(VBC, X) - g(vcca A)>+

(10) +a’b2(g(vCC7X)_g(vCB7A)_g(vBB7X))7

O(p;aX +bA) = a®g(VcA, B)+

a*b(g(VpA, B) — g(Vo X, B) + g(VeC, A))+

+ab2(g(vBAa B) - g(VBAv C) - g(VCC, X))+

+b3g(VBX, C)

Using (9) after a substitutions of X by A, B,C and having in mind (10) we get

g(VaB,C) _ g(VeC,A) _ g(VcA,B)
as1(p) ~  as2(p) T ass(p)

9(VxC.B) _ g(VeB.X) _ g(VBX,0)
azi(p)  — asz2(p) azz(p)

9g(VeX,A) _ g(VxAC) _ g(VaCX)
az1(p) az2(p)  — ass(p)

9(VBA,X) _ g(VaX,B) _ g(VxB,A)
a31(p) asa(p)  — ass(p)

where «;;(p)(i,j = 1,2,3,4) are a minors of a(p). Further we apply (5) for a tangent
vector aX + bA where a and b are an arbitrary real numbers such that a? + > = 1.
According to (10) and using (11) we obtain

a*b(az2(p)g(VxC, B) — az1(p)(9(VeB, A) — g(VeC, A) — g(VBC, X))+
+ab?(asz2(p)g(VaB,C) — az1(p)(9(VeC, X) — g(VpB, X) — g(VcA, B))) = 0.

From this equality and (9) according to the denotions above we have:

azi(p)p =0 —v+p)=0
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Applying (9) for the tangent vector aX + bB and aX + bC we obtain

az2(p)(Y —p+v—A) =0,
ass(P)(0 =+ A—p)=0

and hence we have the system:

azi(p)(p —0—v+p)=0,
az2(p) (Y —p+v—A) =0,
ass(p)(0 =+ A—p)=0

Because of a minors agy(p), ase(p), ass(p) are different from zero then we have the
system:

90—9—V+/1,:07
(12) Yv—p+rv—A=0,
0—p+X—pu=0.

First we consider the equality ¢ — 0 — v+ =0 or
g(VAB,C) - g(VCA, B) = Q(VCC,X) - g(VBBaX)

Changing in this equality X by aX 4 bA and using (3) we obtain:

a’3(g(vAB7C) _g(VCX,B) - g(chvX) - g(vBBvX)>+
+b3(g<vXC?B> - g(vBA7 C) - g(VBBaA) - g(VCC, A>)+
+a*b(—g(VxB,C) = g(VsX,B) + g(VcX,C) — g(VcA, B)~
—9(VeC,X) —g(VeB,X) — g(VeC, A)+

+ab2(_g(VAC, B) +g(vBX7 C) - g(VBAvB) - g(vCAvo)_
_g(vBB7X) _g(vBC7 A) - g(VCB,A) - g(vBC7B)+
9(VeB, A) = g(VcC, X)) =0.

From here we get

Using (3) we can either check that these equalities are equivalents. From (13) we have
also

729(VBC7X) - 2Q(VCB,X) - Q(VCC, A) + Q(VBB,A) = 07
(15)
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and using (3) we can see also that the last two equalities are equivalents. Thus from
(14) and (15) we obtain the system

g(vAB7C) _g(VC'XaB) - g(VCC>X> - g(vBB7X) = Oa
—29(VpC, X) = 29(VeB,X) = g(VcC, A) — g(VpB, A) =0,

and from here we have

Replasing in this system X by aX + bA and using (3) we obtain the equation:

a®(g(VeX, B) = g(VeA, B) + 0% (9(VeX,C) +g(VBA,C))+
+a?b(—g(VpB,X)+ g(VpB,A) + g(VcC, A)+
+9(VcA,B)+g(VcX,B) — g(VcC, A))+
+ab2(—g(VBB,X) . g(VBX, C) — g(VBB,A)+

+g(VBA, C) + g(VcX,X) — g(VCC7 A)) =0.

We sum the coefficients before a?b and ab® which are vanishing and so we obtain the
equality:

—29(VpB, X) +9(VcC, X) +9(VcA, B)+
+9(VeX,B) —g(VeX,C)+g(VeA,C)=0.

Since the coefficients before a® and b3 are vanishing, then

9(VeX,B) +g(VcA, B) =0,

and from here we have —u + v 4+ 60 — ¢ = 0. Because from the results above we have

—p+v+6—1 =0, then summing the last two equalities we obtain ¢ = 1. Analogously
changing in (17) X by aX + bB and having in mind (3) we obtain ¢ = 6. Finally we
have ¢ = ¢ = 6 and then the system (4) has the form:

w(2a—b—c) =0,
(18) Y(2b—c—a) =0,
0(2¢ —a—b) =0.

If o(p; X) # 0, then we obtain (6) which is not possible when p € Q3, hence p(p; X) = 0.
Then ¢ = 1 = 6 and now the system (5) has the form:
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X(a) =A2a —b—c),
(19) X(b) =X2b—c—a),
X(e) =A2c—a—0),

for any tangent vector X € 3. This expression of the system (5) which follows from
the assumption Ranka(p) = 3, contradict with our hypothesis (M, g) to be a pointwise
Osserman on 23 and now we prove this fact. Since Jj is a globally constant on M then
X (J1) =0 and from the system (5) it follows that:

(20) X(J2) = M(a = b)* + (a = ¢)* + (b= ¢)?).

Nowfrom the Viet-formulas:

Jl — 01 = 0,
(21) Jo — Jio1 + 201 =0,
Jg — JQO’l + J10'2 - 30’1 = O,

we obtain X (—Jyo1 + 201) = X (J2) = 0 which is not possible when p € Q3 and it was
proved in [8].

Finally we remark that if J; is a pointwise constant at any point p € M and if J3 = 0,
then (M, g) is a reducible spase or (M, g) is flat [8]. Hence this result complete Theorem
2.
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