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Abstract

Let (M, g) be a four-dimensional Riemannian manifold. The Jacobi operator
RX is symmetric linear endomorphism of the tangent space Mp at a point p ∈ M
defined by RX(u) = R(u, X, X), where X always belongs to the unit sphere SpM at
p . If eigenvalues of RX are pointuise constants on M , then (M, g) is called point-
wise Osserman manifold. In this paper we prove that (M, g) is a four-dimensional
Riemannian manifold such that trace and determinant of Jacobi operator RX are
a globally constant on M if and only if (M, g) ( almost everywhere) locally is a
globally Osserman manifold.

AMS Subject Classifications: 53B20, 15A69.

Let (M, g) be an n-dimensional Riemannian manifold with metric tensor g and cur-
vature tensor R. The Jacobi operator RX is a symmetric linear endomorphism of the
tangent space Mp at a point p ∈ M defined by RX(u) = R(u,X, X), where X belongs to
the unit sphere SpM . Since X is eigenvector of RX with the corresponding eigenvalue
0, then the characteristic equation

(1) det(R(ei, X, X, ej)− cgij) = 0

of RX with a root c can be represented in another form

(2) c(cn−1 + J1c
n−2 + ... + Jn−2c + Jn−1) = 0,

where Ji = Ji(p; X), (i = 1, 2, ..., n − 1). We have from (1) that J1(p; X) = traceRX

and Jn−1(p;X) = detRX . A Riemannian manifold (M, g) is called a globally Osserman
manifold if the eigenvalues of Jacobi operator RX are a globally constants on M , re-
spectivelly (M, g) is called a pointwise Osserman manifold if the eigenvalues of Jacobi
operator RX are a pointwise constants on M [1] . A gobally Osserman manifolds was
investigated from Quo-Shin-Chi which proved that an n− dimensional Riemannian man-
ifold (M, g) is a globally Osserman manifold if and only if (M, g) locally is a symmetric
space of rank 1 or (M, g) is a space of constant sectional curvature, and it holds when
n ≡ 1(mod2), n ≡ 2(mod4) and n = 4 [7]. The Osserman conjecture was generalized
using characteristic coefficients of Jacobi operator in the case dimM = 4 as follows:
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Theorem 1 [10] A four-dimensional Riemannian manifold (M,g) (almost everywhere)
locally is a globally Osserman manifold if and only if the characteristic coefficients J1

and J2 of Jacobi operator RX are a globally constants on M.

Further in the present paper we will use the following:

Proposition 1 [3] [9] If a four-dimensional Riemannian manifold (M, g) is a pointwise
Osserman manifold, then is hold transformation:

(3)

Y = αX + βX1 + γX2 + δX3,
Y1 = −βX + αX1 − δX2 + γX3,
Y2 = −γX + δX1 + αX2 − βX3,
Y3 = −δX − γX1 + βX2 + γX3,

for the eigenvectors X, X1, X2, X3 of the Jacobi operator RX and for the eigenvectors
Y, Y1, Y2, Y3 of the Jacobi operator RY , where X,Y ∈ SpM and hence α2+β2+γ2+δ2 =
1 .

Q. Sh. Chi proved either that if (M, g) is a four-dimensional pointwise Osserman
manifold, then the eigenvector fields of any Jacobi operator RX (say X, A,B, C) are a
smooth vector fields suppose defined in a neighborhood Up at a point p ∈ M .

We remark that at a single point p ∈ M holds X |p= X, X1 |p= A,X2 |p= B,X3 |p=
C. Stanilov and Belger proved the following:

Proposition 2 [9] Let (M, g) be a pointwise Osserman manifold. Then at a neigh-
borhoud of any point of manifold the eigenvalues a, b, c and the eigenvector fields X, A, B,C
of any Jacobi operator RX satisfied the following two systems:

(4)
ϕ(c− b) + ψ(c− a) = 0,
ψ(a− c) + θ(a− b) = 0,
θ(b− a) + φ(b− c) = 0;

and

(5)
X(a) = (µ + ν)a− νb− µc,
X(b) = −νa + (ν + λ)b− λc,
X(c) = −µa− λb + (λ + µ)c,

where
ϕ = g(∇AB,C), ψ = g(∇BC, A), θ = g(∇CA, B),
λ = g(∇AA, X), µ = g(∇BB, X), ν = g(∇CC, X).

Our main aim in this note is to complete the result of Theorem 1 proving the follow-
ing:

Theorem 2 Let (M, g) be a four-dimensional Riemannian manifold. Then (M, g) (al-
most everywhere) locally is a globally Osserman manifold if and only if the characteristic
coefficients J1 and J3 6= 0 (trace and determinant) of Jacobi operator RX are a globally
constants on M .
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Proof. Because the only if part is trivial we will prove in the sequel only the if part.
From our assumption J1 and J3 6= 0 to be globally constants on M it follows that J1 and
J3 6= 0 are pointwise constants on M , which is hold if and only if (M, g) is a pointwise
Osserman [8]. If we denote by α(p) the matrix of the system (5) considering a, b, c as
variables, then according to our hypothesis (M, g) to be a pointwise Osserman it follows
that α(p) has a pontwise entries and also Rankα(p) is a pointwise function at any point
p ∈ M . All possibilities cases of Rankα(p) are Rankα(p) = 1, 2, 3 In these cases any
Jacobi operator RX has respectivelly 1, 2, 3 eigenvalues. Further we will consider all this
cases separatelly.

At first we denote by Ωi the subsets of M defined by the property that any Jacobi
operator RX has i eigenvalues on Ωi where i = 1, 2, 3 . Following Kato [2] we can prove
easly that all sets Ω1,Ω2, Ω3 are open and dense almost everywhere on M.

Case 1. Let Rankα(p) = 1. Then any Jacobi operator RX has three equal eigenvalues
at any point p ∈ Ω1 , i.e.:

(6) a(p) = b(p) = c(p).

and (M, g) is a space of a pointwise constant sectional curvature at p. According to
the Shour’s theorem we have that (M, g) is a space of constant sectional curvature and
hence (M, g) is a globally Osserman manifold on Ω1 [11] .

Case 2. If Rankα(p) = 2, then any Jacobi operator RX has two eigenvalues at any
point q ∈ Ω1 . Now we have α13(q)α32(q)α33(q) = 0 and as we said above two eigenvalues
of Jacobi operator are equal, suppose

(7) a(q) 6= b(q) = c(q)

Then system (5) defined in an open neighborhoud Vq ⊂ Ω2 has the form

(8)
X(a) = (µ + ν)(a− b),

X(b) = µ(b− a) = ν(b− a).

From our assumption X(J3) = 0 and from the last system we have

X(J3) = b(a− b)(µ + ν) = 0.

From here and (7) we have b(q) = 0 or (µ + ν)(q) = 0 .
In the first subcase when b = 0 , from (8) it follows that c = 0 and now from any

results in [4] we have that (M, g) is flat on Vq , which is a trivial case for a globally
Osserman manifold.

In the subcase or (µ + ν)(q) = 0 from the system (8) we have X(a) = 0 and then
X(b + c) = 0 on Vq. Now from the second row of (8) we get X(b) = −µa = −νa, hence
X(b) = (µ − ν)a = 0 at q . Further from (8) we have (µ − ν)(q) = 0 at q and hence
µ(q) = ν(q) = 0 at q. Then from the system (5) it follows that X(a) = X(b) = X(c) = 0
at any point q ∈ M which means that a, b, c are a globally constants and hence (M, g)
is a globally Osserman manifold.

Case 3. If Rankα(p) = 3, then any Jacobi operator RX has three eigenvalues dif-
ferent from zero on a neighborhood (say Up) at a point p ∈ Ω3. In this case we have
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α13(p)α32(p)α33(p) 6= 0 and it is possible to write the well-known relation (6):

(9)
ϕ(p; X)
α31(p)

=
ψ(p; X)
α32(p)

=
θ(p; X)
α33(p)

Now from (9) using the quaternionic transformation (3) we obtain:

ϕ(p; X) = g(∇AB, C), ψ(p;X) = g(∇AC, A), θ(p; X) = g(∇CA,B),
ϕ(p; A) = g(∇XC, B), ψ(p;A) = g(∇CB, X), θ(p; A) = g(∇BX, C),
ϕ(p; B) = g(∇CX, A), ψ(p;B) = g(∇XA,C), θ(p; B) = g(∇XC, B),
ϕ(p; C) = g(∇BA,X), ψ(p; C) = g(∇AX,B), θ(p; C) = g(∇XB, A),

(10)

ϕ(p; aX + bA) = −a3g(∇AB,C) + a2bg(∇XB, C)+
+a2b(g(∇AB, C)− g(∇XB, C))− b3g(∇XB, C),

ψ(p; aX + bA) = a3g(∇BC, A) + b3g(∇CB, X)+
+a2b(g(∇BB, A)− g(∇BC, X)− g(∇CC,A))+
+ab2(g(∇CC, X)− g(∇CB,A)− g(∇BB, X)),

θ(p; aX + bA) = a3g(∇CA,B)+
a2b(g(∇BA,B)− g(∇CX, B) + g(∇CC,A))+
+ab2(g(∇BA, B)− g(∇BA,C)− g(∇CC,X))+
+b3g(∇BX, C).

Using (9) after a substitutions of X by A,B, C and having in mind (10) we get

(11)

g(∇AB,C)
α31(p) = g(∇BC,A)

α32(p) = g(∇CA,B)
α33(p) ,

g(∇XC,B)
α31(p) = g(∇CB,X)

α32(p) = g(∇BX,C)
α33(p) ,

g(∇CX,A)
α31(p) = g(∇XA,C)

α32(p) = g(∇AC,X)
α33(p) ,

g(∇BA,X)
α31(p) = g(∇AX,B)

α32(p) = g(∇XB,A)
α33(p) ,

where αij(p)(i, j = 1, 2, 3, 4) are a minors of α(p). Further we apply (5) for a tangent
vector aX + bA where a and b are an arbitrary real numbers such that a2 + b2 = 1.
According to (10) and using (11) we obtain

a2b(α32(p)g(∇XC, B)− α31(p)(g(∇BB, A)− g(∇CC, A)− g(∇BC,X)))+
+ab2(α32(p)g(∇AB, C)− α31(p)(g(∇CC, X)− g(∇BB, X)− g(∇CA,B))) = 0.

From this equality and (9) according to the denotions above we have:

α31(p)(ϕ− θ − ν + µ) = 0
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Applying (9) for the tangent vector aX + bB and aX + bC we obtain

α32(p)(ψ − ϕ + ν − λ) = 0,
α33(p)(θ − ψ + λ− µ) = 0

and hence we have the system:

α31(p)(ϕ− θ − ν + µ) = 0,
α32(p)(ψ − ϕ + ν − λ) = 0,
α33(p)(θ − ψ + λ− µ) = 0

Because of a minors α31(p), α32(p), α33(p) are different from zero then we have the
system:

(12)
ϕ− θ − ν + µ = 0,
ψ − ϕ + ν − λ = 0,
θ − ψ + λ− µ = 0.

First we consider the equality ϕ− θ − ν + µ = 0 or

g(∇AB,C)− g(∇CA,B) = g(∇CC,X)− g(∇BB, X).

Changing in this equality X by aX + bA and using (3) we obtain:

(13)

a3(g(∇AB, C)− g(∇CX, B)− g(∇CC,X)− g(∇BB, X))+
+b3(g(∇XC, B)− g(∇BA,C)− g(∇BB,A)− g(∇CC, A))+
+a2b(−g(∇XB,C)− g(∇BX, B) + g(∇CX,C)− g(∇CA,B)−
−g(∇CC, X)− g(∇CB, X)− g(∇CC, A)+
+g(∇BB, A)− g(∇BC, X)− g(∇BB,X))+
+ab2(−g(∇AC, B) + g(∇BX, C)− g(∇BA,B)− g(∇CA, C)−
−g(∇BB, X)− g(∇BC,A)− g(∇CB, A)− g(∇BC, B)+
g(∇CB, A)− g(∇CC,X)) = 0.

From here we get

(14) g(∇AB, C)− g(∇CA,B)− g(∇CC, X) + g(∇BB,X) = 0,
g(∇XC, B)− g(∇BA,C)− g(∇BB,A)− g(∇CC, A) = 0.

Using (3) we can either check that these equalities are equivalents. From (13) we have
also

(15)

g(∇XB,C) + g(∇BB, X)− g(∇CC, X) + g(∇CA,B)−
−2g(∇BC, X)− 2g(∇CB, X)− g(∇CC, A) + g(∇BB,A) = 0,

g(∇XC, B)− g(∇BX,C) + g(∇BB,A)− g(∇CC, A)−
−2g(∇BC, A)− 2g(∇CB,A)− g(∇CC, X)− g(∇BB, X) = 0
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and using (3) we can see also that the last two equalities are equivalents. Thus from
(14) and (15) we obtain the system

(16)
g(∇AB, C)− g(∇CX, B)− g(∇CC,X)− g(∇BB, X) = 0,
−g(∇XB, C) + g(∇BB,X)− g(∇CC,X)− g(∇CA,B)−
−2g(∇BC, X)− 2g(∇CB, X)− g(∇CC, A)− g(∇BB,A) = 0,

and from here we have

(17) g(∇CA,B)− g(∇CX,B) = 0.

Replasing in this system X by aX + bA and using (3) we obtain the equation:

a3(g(∇CX,B)− g(∇CA,B)) + b3(g(∇BX,C) + g(∇BA,C))+
+a2b(−g(∇BB, X) + g(∇BB, A) + g(∇CC,A)+
+g(∇CA,B) + g(∇CX, B)− g(∇CC, A))+
+ab2(−g(∇BB, X)− g(∇BX,C)− g(∇BB, A)+
+g(∇BA,C) + g(∇CX,X)− g(∇CC, A)) = 0.

We sum the coefficients before a2b and ab2 which are vanishing and so we obtain the
equality:

−2g(∇BB,X) + g(∇CC, X) + g(∇CA,B)+
+g(∇CX,B)− g(∇BX, C) + g(∇BA,C) = 0.

Since the coefficients before a3 and b3 are vanishing, then

g(∇CX, B) + g(∇CA,B) = 0,
g(∇BX,C) + g(∇BA,C) = 0

and from here we have −µ + ν + θ − ϕ = 0. Because from the results above we have
−µ+ν +θ−ψ = 0, then summing the last two equalities we obtain ϕ = ψ. Analogously
changing in (17) X by aX + bB and having in mind (3) we obtain ϕ = θ. Finally we
have ϕ = ψ = θ and then the system (4) has the form:

(18)
ϕ(2a− b− c) = 0,
ψ(2b− c− a) = 0,
θ(2c− a− b) = 0.

If ϕ(p; X) 6= 0, then we obtain (6) which is not possible when p ∈ Ω3, hence ϕ(p; X) = 0.
Then ϕ = ψ = θ and now the system (5) has the form:
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(19)
X(a) = λ(2a− b− c),
X(b) = λ(2b− c− a),
X(c) = λ(2c− a− b),

for any tangent vector X ∈ Ω3. This expression of the system (5) which follows from
the assumption Rankα(p) = 3, contradict with our hypothesis (M, g) to be a pointwise
Osserman on Ω3 and now we prove this fact. Since J1 is a globally constant on M then
X(J1) = 0 and from the system (5) it follows that:

(20) X(J2) = λ((a− b)2 + (a− c)2 + (b− c)2).

Nowfrom the Viet-formulas:

(21)
J1 − σ1 = 0,

J2 − J1σ1 + 2σ1 = 0,
J3 − J2σ1 + J1σ2 − 3σ1 = 0,

we obtain X(−J1σ1 + 2σ1) = X(J2) = 0 which is not possible when p ∈ Ω3 and it was
proved in [8].

Finally we remark that if J1 is a pointwise constant at any point p ∈ M and if J3 = 0,
then (M, g) is a reducible spase or (M, g) is flat [8]. Hence this result complete Theorem
2.
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